| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evls1gsumadd.q |  |-  Q = ( S evalSub1 R ) | 
						
							| 2 |  | evls1gsumadd.k |  |-  K = ( Base ` S ) | 
						
							| 3 |  | evls1gsumadd.w |  |-  W = ( Poly1 ` U ) | 
						
							| 4 |  | evls1gsumadd.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | evls1gsumadd.u |  |-  U = ( S |`s R ) | 
						
							| 6 |  | evls1gsumadd.p |  |-  P = ( S ^s K ) | 
						
							| 7 |  | evls1gsumadd.b |  |-  B = ( Base ` W ) | 
						
							| 8 |  | evls1gsumadd.s |  |-  ( ph -> S e. CRing ) | 
						
							| 9 |  | evls1gsumadd.r |  |-  ( ph -> R e. ( SubRing ` S ) ) | 
						
							| 10 |  | evls1gsumadd.y |  |-  ( ( ph /\ x e. N ) -> Y e. B ) | 
						
							| 11 |  | evls1gsumadd.n |  |-  ( ph -> N C_ NN0 ) | 
						
							| 12 |  | evls1gsumadd.f |  |-  ( ph -> ( x e. N |-> Y ) finSupp .0. ) | 
						
							| 13 | 5 | subrgring |  |-  ( R e. ( SubRing ` S ) -> U e. Ring ) | 
						
							| 14 | 3 | ply1ring |  |-  ( U e. Ring -> W e. Ring ) | 
						
							| 15 |  | ringcmn |  |-  ( W e. Ring -> W e. CMnd ) | 
						
							| 16 | 9 13 14 15 | 4syl |  |-  ( ph -> W e. CMnd ) | 
						
							| 17 |  | crngring |  |-  ( S e. CRing -> S e. Ring ) | 
						
							| 18 | 8 17 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 19 | 2 | fvexi |  |-  K e. _V | 
						
							| 20 | 18 19 | jctir |  |-  ( ph -> ( S e. Ring /\ K e. _V ) ) | 
						
							| 21 | 6 | pwsring |  |-  ( ( S e. Ring /\ K e. _V ) -> P e. Ring ) | 
						
							| 22 |  | ringmnd |  |-  ( P e. Ring -> P e. Mnd ) | 
						
							| 23 | 20 21 22 | 3syl |  |-  ( ph -> P e. Mnd ) | 
						
							| 24 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 25 | 24 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 26 | 25 11 | ssexd |  |-  ( ph -> N e. _V ) | 
						
							| 27 | 1 2 6 5 3 | evls1rhm |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) | 
						
							| 28 | 8 9 27 | syl2anc |  |-  ( ph -> Q e. ( W RingHom P ) ) | 
						
							| 29 |  | rhmghm |  |-  ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) ) | 
						
							| 30 |  | ghmmhm |  |-  ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) ) | 
						
							| 31 | 28 29 30 | 3syl |  |-  ( ph -> Q e. ( W MndHom P ) ) | 
						
							| 32 | 7 4 16 23 26 31 10 12 | gsummptmhm |  |-  ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |