Step |
Hyp |
Ref |
Expression |
1 |
|
evls1gsumadd.q |
|- Q = ( S evalSub1 R ) |
2 |
|
evls1gsumadd.k |
|- K = ( Base ` S ) |
3 |
|
evls1gsumadd.w |
|- W = ( Poly1 ` U ) |
4 |
|
evls1gsumadd.0 |
|- .0. = ( 0g ` W ) |
5 |
|
evls1gsumadd.u |
|- U = ( S |`s R ) |
6 |
|
evls1gsumadd.p |
|- P = ( S ^s K ) |
7 |
|
evls1gsumadd.b |
|- B = ( Base ` W ) |
8 |
|
evls1gsumadd.s |
|- ( ph -> S e. CRing ) |
9 |
|
evls1gsumadd.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
evls1gsumadd.y |
|- ( ( ph /\ x e. N ) -> Y e. B ) |
11 |
|
evls1gsumadd.n |
|- ( ph -> N C_ NN0 ) |
12 |
|
evls1gsumadd.f |
|- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
13 |
5
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
14 |
9 13
|
syl |
|- ( ph -> U e. Ring ) |
15 |
3
|
ply1ring |
|- ( U e. Ring -> W e. Ring ) |
16 |
|
ringcmn |
|- ( W e. Ring -> W e. CMnd ) |
17 |
14 15 16
|
3syl |
|- ( ph -> W e. CMnd ) |
18 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
19 |
8 18
|
syl |
|- ( ph -> S e. Ring ) |
20 |
2
|
fvexi |
|- K e. _V |
21 |
19 20
|
jctir |
|- ( ph -> ( S e. Ring /\ K e. _V ) ) |
22 |
6
|
pwsring |
|- ( ( S e. Ring /\ K e. _V ) -> P e. Ring ) |
23 |
|
ringmnd |
|- ( P e. Ring -> P e. Mnd ) |
24 |
21 22 23
|
3syl |
|- ( ph -> P e. Mnd ) |
25 |
|
nn0ex |
|- NN0 e. _V |
26 |
25
|
a1i |
|- ( ph -> NN0 e. _V ) |
27 |
26 11
|
ssexd |
|- ( ph -> N e. _V ) |
28 |
1 2 6 5 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
29 |
8 9 28
|
syl2anc |
|- ( ph -> Q e. ( W RingHom P ) ) |
30 |
|
rhmghm |
|- ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) ) |
31 |
|
ghmmhm |
|- ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) ) |
32 |
29 30 31
|
3syl |
|- ( ph -> Q e. ( W MndHom P ) ) |
33 |
7 4 17 24 27 32 10 12
|
gsummptmhm |
|- ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ) |
34 |
33
|
eqcomd |
|- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |