Step |
Hyp |
Ref |
Expression |
1 |
|
evls1gsummul.q |
|- Q = ( S evalSub1 R ) |
2 |
|
evls1gsummul.k |
|- K = ( Base ` S ) |
3 |
|
evls1gsummul.w |
|- W = ( Poly1 ` U ) |
4 |
|
evls1gsummul.g |
|- G = ( mulGrp ` W ) |
5 |
|
evls1gsummul.1 |
|- .1. = ( 1r ` W ) |
6 |
|
evls1gsummul.u |
|- U = ( S |`s R ) |
7 |
|
evls1gsummul.p |
|- P = ( S ^s K ) |
8 |
|
evls1gsummul.h |
|- H = ( mulGrp ` P ) |
9 |
|
evls1gsummul.b |
|- B = ( Base ` W ) |
10 |
|
evls1gsummul.s |
|- ( ph -> S e. CRing ) |
11 |
|
evls1gsummul.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
12 |
|
evls1gsummul.y |
|- ( ( ph /\ x e. N ) -> Y e. B ) |
13 |
|
evls1gsummul.n |
|- ( ph -> N C_ NN0 ) |
14 |
|
evls1gsummul.f |
|- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
15 |
4 9
|
mgpbas |
|- B = ( Base ` G ) |
16 |
4 5
|
ringidval |
|- .1. = ( 0g ` G ) |
17 |
6
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
18 |
10 11 17
|
syl2anc |
|- ( ph -> U e. CRing ) |
19 |
3
|
ply1crng |
|- ( U e. CRing -> W e. CRing ) |
20 |
4
|
crngmgp |
|- ( W e. CRing -> G e. CMnd ) |
21 |
18 19 20
|
3syl |
|- ( ph -> G e. CMnd ) |
22 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
23 |
10 22
|
syl |
|- ( ph -> S e. Ring ) |
24 |
2
|
fvexi |
|- K e. _V |
25 |
23 24
|
jctir |
|- ( ph -> ( S e. Ring /\ K e. _V ) ) |
26 |
7
|
pwsring |
|- ( ( S e. Ring /\ K e. _V ) -> P e. Ring ) |
27 |
8
|
ringmgp |
|- ( P e. Ring -> H e. Mnd ) |
28 |
25 26 27
|
3syl |
|- ( ph -> H e. Mnd ) |
29 |
|
nn0ex |
|- NN0 e. _V |
30 |
29
|
a1i |
|- ( ph -> NN0 e. _V ) |
31 |
30 13
|
ssexd |
|- ( ph -> N e. _V ) |
32 |
1 2 7 6 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
33 |
10 11 32
|
syl2anc |
|- ( ph -> Q e. ( W RingHom P ) ) |
34 |
4 8
|
rhmmhm |
|- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
35 |
33 34
|
syl |
|- ( ph -> Q e. ( G MndHom H ) ) |
36 |
15 16 21 28 31 35 12 14
|
gsummptmhm |
|- ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) ) |
37 |
36
|
eqcomd |
|- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |