| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evls1rhm.q |  |-  Q = ( S evalSub1 R ) | 
						
							| 2 |  | evls1rhm.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | evls1rhm.t |  |-  T = ( S ^s B ) | 
						
							| 4 |  | evls1rhm.u |  |-  U = ( S |`s R ) | 
						
							| 5 |  | evls1rhm.w |  |-  W = ( Poly1 ` U ) | 
						
							| 6 | 2 | subrgss |  |-  ( R e. ( SubRing ` S ) -> R C_ B ) | 
						
							| 7 | 6 | adantl |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R C_ B ) | 
						
							| 8 |  | elpwg |  |-  ( R e. ( SubRing ` S ) -> ( R e. ~P B <-> R C_ B ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( R e. ~P B <-> R C_ B ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> R e. ~P B ) | 
						
							| 11 |  | eqid |  |-  ( 1o evalSub S ) = ( 1o evalSub S ) | 
						
							| 12 | 1 11 2 | evls1fval |  |-  ( ( S e. CRing /\ R e. ~P B ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) | 
						
							| 13 | 10 12 | syldan |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) ) | 
						
							| 14 |  | eqid |  |-  ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
							| 15 | 2 3 14 | evls1rhmlem |  |-  ( S e. CRing -> ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( S ^s ( B ^m 1o ) ) RingHom T ) ) | 
						
							| 16 |  | 1on |  |-  1o e. On | 
						
							| 17 |  | eqid |  |-  ( ( 1o evalSub S ) ` R ) = ( ( 1o evalSub S ) ` R ) | 
						
							| 18 |  | eqid |  |-  ( 1o mPoly U ) = ( 1o mPoly U ) | 
						
							| 19 |  | eqid |  |-  ( S ^s ( B ^m 1o ) ) = ( S ^s ( B ^m 1o ) ) | 
						
							| 20 | 17 18 4 19 2 | evlsrhm |  |-  ( ( 1o e. On /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) | 
						
							| 21 | 16 20 | mp3an1 |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) | 
						
							| 22 |  | eqidd |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` W ) = ( Base ` W ) ) | 
						
							| 23 |  | eqidd |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` ( S ^s ( B ^m 1o ) ) ) = ( Base ` ( S ^s ( B ^m 1o ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 25 | 5 24 | ply1bas |  |-  ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) | 
						
							| 26 | 25 | a1i |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` W ) = ( Base ` ( 1o mPoly U ) ) ) | 
						
							| 27 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 28 | 5 18 27 | ply1plusg |  |-  ( +g ` W ) = ( +g ` ( 1o mPoly U ) ) | 
						
							| 29 | 28 | a1i |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( +g ` W ) = ( +g ` ( 1o mPoly U ) ) ) | 
						
							| 30 | 29 | oveqdr |  |-  ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` ( 1o mPoly U ) ) y ) ) | 
						
							| 31 |  | eqidd |  |-  ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( S ^s ( B ^m 1o ) ) ) ) ) -> ( x ( +g ` ( S ^s ( B ^m 1o ) ) ) y ) = ( x ( +g ` ( S ^s ( B ^m 1o ) ) ) y ) ) | 
						
							| 32 |  | eqid |  |-  ( .r ` W ) = ( .r ` W ) | 
						
							| 33 | 5 18 32 | ply1mulr |  |-  ( .r ` W ) = ( .r ` ( 1o mPoly U ) ) | 
						
							| 34 | 33 | a1i |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( .r ` W ) = ( .r ` ( 1o mPoly U ) ) ) | 
						
							| 35 | 34 | oveqdr |  |-  ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` ( 1o mPoly U ) ) y ) ) | 
						
							| 36 |  | eqidd |  |-  ( ( ( S e. CRing /\ R e. ( SubRing ` S ) ) /\ ( x e. ( Base ` ( S ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( S ^s ( B ^m 1o ) ) ) ) ) -> ( x ( .r ` ( S ^s ( B ^m 1o ) ) ) y ) = ( x ( .r ` ( S ^s ( B ^m 1o ) ) ) y ) ) | 
						
							| 37 | 22 23 26 23 30 31 35 36 | rhmpropd |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( W RingHom ( S ^s ( B ^m 1o ) ) ) = ( ( 1o mPoly U ) RingHom ( S ^s ( B ^m 1o ) ) ) ) | 
						
							| 38 | 21 37 | eleqtrrd |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( 1o evalSub S ) ` R ) e. ( W RingHom ( S ^s ( B ^m 1o ) ) ) ) | 
						
							| 39 |  | rhmco |  |-  ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( S ^s ( B ^m 1o ) ) RingHom T ) /\ ( ( 1o evalSub S ) ` R ) e. ( W RingHom ( S ^s ( B ^m 1o ) ) ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) e. ( W RingHom T ) ) | 
						
							| 40 | 15 38 39 | syl2an2r |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub S ) ` R ) ) e. ( W RingHom T ) ) | 
						
							| 41 | 13 40 | eqeltrd |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom T ) ) |