Step |
Hyp |
Ref |
Expression |
1 |
|
evls1var.q |
|- Q = ( S evalSub1 R ) |
2 |
|
evls1var.x |
|- X = ( var1 ` U ) |
3 |
|
evls1var.u |
|- U = ( S |`s R ) |
4 |
|
evls1var.b |
|- B = ( Base ` S ) |
5 |
|
evls1var.s |
|- ( ph -> S e. CRing ) |
6 |
|
evls1var.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
7 |
|
eqid |
|- ( var1 ` S ) = ( var1 ` S ) |
8 |
7 6 3
|
subrgvr1 |
|- ( ph -> ( var1 ` S ) = ( var1 ` U ) ) |
9 |
2 8
|
eqtr4id |
|- ( ph -> X = ( var1 ` S ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( Q ` X ) = ( Q ` ( var1 ` S ) ) ) |
11 |
|
eqid |
|- ( ( 1o evalSub S ) ` R ) = ( ( 1o evalSub S ) ` R ) |
12 |
|
eqid |
|- ( 1o eval S ) = ( 1o eval S ) |
13 |
|
eqid |
|- ( 1o mVar U ) = ( 1o mVar U ) |
14 |
|
1on |
|- 1o e. On |
15 |
14
|
a1i |
|- ( ph -> 1o e. On ) |
16 |
|
0lt1o |
|- (/) e. 1o |
17 |
16
|
a1i |
|- ( ph -> (/) e. 1o ) |
18 |
11 12 13 3 4 15 5 6 17
|
evlsvarsrng |
|- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( ( 1o mVar U ) ` (/) ) ) = ( ( 1o eval S ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
19 |
7
|
vr1val |
|- ( var1 ` S ) = ( ( 1o mVar S ) ` (/) ) |
20 |
|
eqid |
|- ( 1o mVar S ) = ( 1o mVar S ) |
21 |
20 15 6 3
|
subrgmvr |
|- ( ph -> ( 1o mVar S ) = ( 1o mVar U ) ) |
22 |
21
|
fveq1d |
|- ( ph -> ( ( 1o mVar S ) ` (/) ) = ( ( 1o mVar U ) ` (/) ) ) |
23 |
19 22
|
eqtrid |
|- ( ph -> ( var1 ` S ) = ( ( 1o mVar U ) ` (/) ) ) |
24 |
23
|
fveq2d |
|- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) = ( ( ( 1o evalSub S ) ` R ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
25 |
23
|
fveq2d |
|- ( ph -> ( ( 1o eval S ) ` ( var1 ` S ) ) = ( ( 1o eval S ) ` ( ( 1o mVar U ) ` (/) ) ) ) |
26 |
18 24 25
|
3eqtr4d |
|- ( ph -> ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) = ( ( 1o eval S ) ` ( var1 ` S ) ) ) |
27 |
26
|
coeq1d |
|- ( ph -> ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
28 |
|
eqid |
|- ( Poly1 ` U ) = ( Poly1 ` U ) |
29 |
|
eqid |
|- ( Poly1 ` ( S |`s R ) ) = ( Poly1 ` ( S |`s R ) ) |
30 |
|
eqid |
|- ( PwSer1 ` ( S |`s R ) ) = ( PwSer1 ` ( S |`s R ) ) |
31 |
3
|
fveq2i |
|- ( Poly1 ` U ) = ( Poly1 ` ( S |`s R ) ) |
32 |
31
|
fveq2i |
|- ( Base ` ( Poly1 ` U ) ) = ( Base ` ( Poly1 ` ( S |`s R ) ) ) |
33 |
29 30 32
|
ply1bas |
|- ( Base ` ( Poly1 ` U ) ) = ( Base ` ( 1o mPoly ( S |`s R ) ) ) |
34 |
33
|
eqcomi |
|- ( Base ` ( 1o mPoly ( S |`s R ) ) ) = ( Base ` ( Poly1 ` U ) ) |
35 |
7 6 3 28 34
|
subrgvr1cl |
|- ( ph -> ( var1 ` S ) e. ( Base ` ( 1o mPoly ( S |`s R ) ) ) ) |
36 |
|
eqid |
|- ( 1o evalSub S ) = ( 1o evalSub S ) |
37 |
|
eqid |
|- ( 1o mPoly ( S |`s R ) ) = ( 1o mPoly ( S |`s R ) ) |
38 |
|
eqid |
|- ( Base ` ( 1o mPoly ( S |`s R ) ) ) = ( Base ` ( 1o mPoly ( S |`s R ) ) ) |
39 |
1 36 4 37 38
|
evls1val |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) /\ ( var1 ` S ) e. ( Base ` ( 1o mPoly ( S |`s R ) ) ) ) -> ( Q ` ( var1 ` S ) ) = ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
40 |
5 6 35 39
|
syl3anc |
|- ( ph -> ( Q ` ( var1 ` S ) ) = ( ( ( ( 1o evalSub S ) ` R ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
41 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
42 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
43 |
|
eqid |
|- ( PwSer1 ` S ) = ( PwSer1 ` S ) |
44 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
45 |
42 43 44
|
ply1bas |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( 1o mPoly S ) ) |
46 |
45
|
eqcomi |
|- ( Base ` ( 1o mPoly S ) ) = ( Base ` ( Poly1 ` S ) ) |
47 |
7 42 46
|
vr1cl |
|- ( S e. Ring -> ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) |
48 |
5 41 47
|
3syl |
|- ( ph -> ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) |
49 |
|
eqid |
|- ( eval1 ` S ) = ( eval1 ` S ) |
50 |
|
eqid |
|- ( 1o mPoly S ) = ( 1o mPoly S ) |
51 |
|
eqid |
|- ( Base ` ( 1o mPoly S ) ) = ( Base ` ( 1o mPoly S ) ) |
52 |
49 12 4 50 51
|
evl1val |
|- ( ( S e. CRing /\ ( var1 ` S ) e. ( Base ` ( 1o mPoly S ) ) ) -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
53 |
5 48 52
|
syl2anc |
|- ( ph -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( ( ( 1o eval S ) ` ( var1 ` S ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
54 |
27 40 53
|
3eqtr4d |
|- ( ph -> ( Q ` ( var1 ` S ) ) = ( ( eval1 ` S ) ` ( var1 ` S ) ) ) |
55 |
49 7 4
|
evl1var |
|- ( S e. CRing -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( _I |` B ) ) |
56 |
5 55
|
syl |
|- ( ph -> ( ( eval1 ` S ) ` ( var1 ` S ) ) = ( _I |` B ) ) |
57 |
10 54 56
|
3eqtrd |
|- ( ph -> ( Q ` X ) = ( _I |` B ) ) |