Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
|- Q = ( S evalSub1 R ) |
2 |
|
ressply1evl2.k |
|- K = ( Base ` S ) |
3 |
|
ressply1evl2.w |
|- W = ( Poly1 ` U ) |
4 |
|
ressply1evl2.u |
|- U = ( S |`s R ) |
5 |
|
ressply1evl2.b |
|- B = ( Base ` W ) |
6 |
|
evls1vsca.1 |
|- .X. = ( .s ` W ) |
7 |
|
evls1vsca.2 |
|- .x. = ( .r ` S ) |
8 |
|
evls1vsca.s |
|- ( ph -> S e. CRing ) |
9 |
|
evls1vsca.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
evls1vsca.m |
|- ( ph -> A e. R ) |
11 |
|
evls1vsca.n |
|- ( ph -> N e. B ) |
12 |
|
evls1vsca.y |
|- ( ph -> C e. K ) |
13 |
|
id |
|- ( ph -> ph ) |
14 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
15 |
|
eqid |
|- ( ( Poly1 ` S ) |`s B ) = ( ( Poly1 ` S ) |`s B ) |
16 |
14 4 3 5 9 15
|
ressply1vsca |
|- ( ( ph /\ ( A e. R /\ N e. B ) ) -> ( A ( .s ` W ) N ) = ( A ( .s ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
17 |
13 10 11 16
|
syl12anc |
|- ( ph -> ( A ( .s ` W ) N ) = ( A ( .s ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
18 |
6
|
oveqi |
|- ( A .X. N ) = ( A ( .s ` W ) N ) |
19 |
5
|
fvexi |
|- B e. _V |
20 |
|
eqid |
|- ( .s ` ( Poly1 ` S ) ) = ( .s ` ( Poly1 ` S ) ) |
21 |
15 20
|
ressvsca |
|- ( B e. _V -> ( .s ` ( Poly1 ` S ) ) = ( .s ` ( ( Poly1 ` S ) |`s B ) ) ) |
22 |
19 21
|
ax-mp |
|- ( .s ` ( Poly1 ` S ) ) = ( .s ` ( ( Poly1 ` S ) |`s B ) ) |
23 |
22
|
oveqi |
|- ( A ( .s ` ( Poly1 ` S ) ) N ) = ( A ( .s ` ( ( Poly1 ` S ) |`s B ) ) N ) |
24 |
17 18 23
|
3eqtr4g |
|- ( ph -> ( A .X. N ) = ( A ( .s ` ( Poly1 ` S ) ) N ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( ( eval1 ` S ) ` ( A .X. N ) ) = ( ( eval1 ` S ) ` ( A ( .s ` ( Poly1 ` S ) ) N ) ) ) |
26 |
25
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( A .X. N ) ) ` C ) = ( ( ( eval1 ` S ) ` ( A ( .s ` ( Poly1 ` S ) ) N ) ) ` C ) ) |
27 |
|
eqid |
|- ( eval1 ` S ) = ( eval1 ` S ) |
28 |
1 2 3 4 5 27 8 9
|
ressply1evl |
|- ( ph -> Q = ( ( eval1 ` S ) |` B ) ) |
29 |
28
|
fveq1d |
|- ( ph -> ( Q ` ( A .X. N ) ) = ( ( ( eval1 ` S ) |` B ) ` ( A .X. N ) ) ) |
30 |
4
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
31 |
8 9 30
|
syl2anc |
|- ( ph -> U e. CRing ) |
32 |
|
crngring |
|- ( U e. CRing -> U e. Ring ) |
33 |
3
|
ply1lmod |
|- ( U e. Ring -> W e. LMod ) |
34 |
31 32 33
|
3syl |
|- ( ph -> W e. LMod ) |
35 |
2
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
36 |
9 35
|
syl |
|- ( ph -> R C_ K ) |
37 |
4 2
|
ressbas2 |
|- ( R C_ K -> R = ( Base ` U ) ) |
38 |
36 37
|
syl |
|- ( ph -> R = ( Base ` U ) ) |
39 |
4
|
ovexi |
|- U e. _V |
40 |
3
|
ply1sca |
|- ( U e. _V -> U = ( Scalar ` W ) ) |
41 |
39 40
|
mp1i |
|- ( ph -> U = ( Scalar ` W ) ) |
42 |
41
|
fveq2d |
|- ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) ) |
43 |
38 42
|
eqtrd |
|- ( ph -> R = ( Base ` ( Scalar ` W ) ) ) |
44 |
10 43
|
eleqtrd |
|- ( ph -> A e. ( Base ` ( Scalar ` W ) ) ) |
45 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
46 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
47 |
5 45 6 46
|
lmodvscl |
|- ( ( W e. LMod /\ A e. ( Base ` ( Scalar ` W ) ) /\ N e. B ) -> ( A .X. N ) e. B ) |
48 |
34 44 11 47
|
syl3anc |
|- ( ph -> ( A .X. N ) e. B ) |
49 |
48
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` ( A .X. N ) ) = ( ( eval1 ` S ) ` ( A .X. N ) ) ) |
50 |
29 49
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` ( A .X. N ) ) = ( Q ` ( A .X. N ) ) ) |
51 |
50
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( A .X. N ) ) ` C ) = ( ( Q ` ( A .X. N ) ) ` C ) ) |
52 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
53 |
|
eqid |
|- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
54 |
|
eqid |
|- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
55 |
14 4 3 5 9 53 54 52
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
56 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
57 |
55 56
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
58 |
57 11
|
sseldd |
|- ( ph -> N e. ( Base ` ( Poly1 ` S ) ) ) |
59 |
28
|
fveq1d |
|- ( ph -> ( Q ` N ) = ( ( ( eval1 ` S ) |` B ) ` N ) ) |
60 |
11
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` N ) = ( ( eval1 ` S ) ` N ) ) |
61 |
59 60
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` N ) = ( Q ` N ) ) |
62 |
61
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) |
63 |
58 62
|
jca |
|- ( ph -> ( N e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) ) |
64 |
36 10
|
sseldd |
|- ( ph -> A e. K ) |
65 |
27 14 2 52 8 12 63 64 20 7
|
evl1vsd |
|- ( ph -> ( ( A ( .s ` ( Poly1 ` S ) ) N ) e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` ( A ( .s ` ( Poly1 ` S ) ) N ) ) ` C ) = ( A .x. ( ( Q ` N ) ` C ) ) ) ) |
66 |
65
|
simprd |
|- ( ph -> ( ( ( eval1 ` S ) ` ( A ( .s ` ( Poly1 ` S ) ) N ) ) ` C ) = ( A .x. ( ( Q ` N ) ` C ) ) ) |
67 |
26 51 66
|
3eqtr3d |
|- ( ph -> ( ( Q ` ( A .X. N ) ) ` C ) = ( A .x. ( ( Q ` N ) ` C ) ) ) |