Step |
Hyp |
Ref |
Expression |
1 |
|
evlsca.q |
|- Q = ( I eval S ) |
2 |
|
evlsca.w |
|- W = ( I mPoly S ) |
3 |
|
evlsca.b |
|- B = ( Base ` S ) |
4 |
|
evlsca.a |
|- A = ( algSc ` W ) |
5 |
|
evlsca.i |
|- ( ph -> I e. V ) |
6 |
|
evlsca.s |
|- ( ph -> S e. CRing ) |
7 |
|
evlsca.x |
|- ( ph -> X e. B ) |
8 |
|
eqid |
|- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
9 |
|
eqid |
|- ( I mPoly ( S |`s B ) ) = ( I mPoly ( S |`s B ) ) |
10 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
11 |
|
eqid |
|- ( algSc ` ( I mPoly ( S |`s B ) ) ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) |
12 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
13 |
3
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
14 |
6 12 13
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
15 |
8 1 9 10 2 3 11 4 5 6 14 7
|
evlsscasrng |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( Q ` ( A ` X ) ) ) |
16 |
8 9 10 3 11 5 6 14 7
|
evlssca |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
17 |
15 16
|
eqtr3d |
|- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |