Step |
Hyp |
Ref |
Expression |
1 |
|
evlseu.p |
|- P = ( I mPoly R ) |
2 |
|
evlseu.c |
|- C = ( Base ` S ) |
3 |
|
evlseu.a |
|- A = ( algSc ` P ) |
4 |
|
evlseu.v |
|- V = ( I mVar R ) |
5 |
|
evlseu.i |
|- ( ph -> I e. W ) |
6 |
|
evlseu.r |
|- ( ph -> R e. CRing ) |
7 |
|
evlseu.s |
|- ( ph -> S e. CRing ) |
8 |
|
evlseu.f |
|- ( ph -> F e. ( R RingHom S ) ) |
9 |
|
evlseu.g |
|- ( ph -> G : I --> C ) |
10 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
11 |
|
eqid |
|- { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } = { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |
12 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
13 |
|
eqid |
|- ( .g ` ( mulGrp ` S ) ) = ( .g ` ( mulGrp ` S ) ) |
14 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
15 |
|
eqid |
|- ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) |
16 |
1 10 2 11 12 13 14 4 15 5 6 7 8 9 3
|
evlslem1 |
|- ( ph -> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) |
17 |
|
coeq1 |
|- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( m o. A ) = ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) ) |
18 |
17
|
eqeq1d |
|- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( m o. A ) = F <-> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F ) ) |
19 |
|
coeq1 |
|- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( m o. V ) = ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) ) |
20 |
19
|
eqeq1d |
|- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( m o. V ) = G <-> ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) |
21 |
18 20
|
anbi12d |
|- ( m = ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) <-> ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) ) |
22 |
21
|
rspcev |
|- ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) ) -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
23 |
22
|
3impb |
|- ( ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) e. ( P RingHom S ) /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. A ) = F /\ ( ( x e. ( Base ` P ) |-> ( S gsum ( y e. { z e. ( NN0 ^m I ) | ( `' z " NN ) e. Fin } |-> ( ( F ` ( x ` y ) ) ( .r ` S ) ( ( mulGrp ` S ) gsum ( y oF ( .g ` ( mulGrp ` S ) ) G ) ) ) ) ) ) o. V ) = G ) -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
24 |
16 23
|
syl |
|- ( ph -> E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
26 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
27 |
6 26
|
syl |
|- ( ph -> R e. Ring ) |
28 |
1 10 25 3 5 27
|
mplasclf |
|- ( ph -> A : ( Base ` R ) --> ( Base ` P ) ) |
29 |
28
|
ffund |
|- ( ph -> Fun A ) |
30 |
|
funcoeqres |
|- ( ( Fun A /\ ( m o. A ) = F ) -> ( m |` ran A ) = ( F o. `' A ) ) |
31 |
29 30
|
sylan |
|- ( ( ph /\ ( m o. A ) = F ) -> ( m |` ran A ) = ( F o. `' A ) ) |
32 |
1 4 10 5 27
|
mvrf2 |
|- ( ph -> V : I --> ( Base ` P ) ) |
33 |
32
|
ffund |
|- ( ph -> Fun V ) |
34 |
|
funcoeqres |
|- ( ( Fun V /\ ( m o. V ) = G ) -> ( m |` ran V ) = ( G o. `' V ) ) |
35 |
33 34
|
sylan |
|- ( ( ph /\ ( m o. V ) = G ) -> ( m |` ran V ) = ( G o. `' V ) ) |
36 |
31 35
|
anim12dan |
|- ( ( ph /\ ( ( m o. A ) = F /\ ( m o. V ) = G ) ) -> ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) ) |
37 |
36
|
ex |
|- ( ph -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) ) ) |
38 |
|
resundi |
|- ( m |` ( ran A u. ran V ) ) = ( ( m |` ran A ) u. ( m |` ran V ) ) |
39 |
|
uneq12 |
|- ( ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) -> ( ( m |` ran A ) u. ( m |` ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
40 |
38 39
|
eqtrid |
|- ( ( ( m |` ran A ) = ( F o. `' A ) /\ ( m |` ran V ) = ( G o. `' V ) ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
41 |
37 40
|
syl6 |
|- ( ph -> ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
42 |
41
|
ralrimivw |
|- ( ph -> A. m e. ( P RingHom S ) ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
43 |
|
eqtr3 |
|- ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) ) |
44 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
45 |
44 5 6
|
psrassa |
|- ( ph -> ( I mPwSer R ) e. AssAlg ) |
46 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
47 |
44 4 46 5 27
|
mvrf |
|- ( ph -> V : I --> ( Base ` ( I mPwSer R ) ) ) |
48 |
47
|
frnd |
|- ( ph -> ran V C_ ( Base ` ( I mPwSer R ) ) ) |
49 |
|
eqid |
|- ( AlgSpan ` ( I mPwSer R ) ) = ( AlgSpan ` ( I mPwSer R ) ) |
50 |
|
eqid |
|- ( algSc ` ( I mPwSer R ) ) = ( algSc ` ( I mPwSer R ) ) |
51 |
|
eqid |
|- ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) = ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) |
52 |
49 50 51 46
|
aspval2 |
|- ( ( ( I mPwSer R ) e. AssAlg /\ ran V C_ ( Base ` ( I mPwSer R ) ) ) -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
53 |
45 48 52
|
syl2anc |
|- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
54 |
1 44 4 49 5 6
|
mplbas2 |
|- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( Base ` P ) ) |
55 |
44 1 10 5 27
|
mplsubrg |
|- ( ph -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
56 |
1 44 10
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
57 |
56
|
subsubrg2 |
|- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( SubRing ` P ) = ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
58 |
55 57
|
syl |
|- ( ph -> ( SubRing ` P ) = ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
59 |
58
|
fveq2d |
|- ( ph -> ( mrCls ` ( SubRing ` P ) ) = ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ) |
60 |
50 56
|
ressascl |
|- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( algSc ` ( I mPwSer R ) ) = ( algSc ` P ) ) |
61 |
55 60
|
syl |
|- ( ph -> ( algSc ` ( I mPwSer R ) ) = ( algSc ` P ) ) |
62 |
3 61
|
eqtr4id |
|- ( ph -> A = ( algSc ` ( I mPwSer R ) ) ) |
63 |
62
|
rneqd |
|- ( ph -> ran A = ran ( algSc ` ( I mPwSer R ) ) ) |
64 |
63
|
uneq1d |
|- ( ph -> ( ran A u. ran V ) = ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) |
65 |
59 64
|
fveq12d |
|- ( ph -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) = ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
66 |
|
assaring |
|- ( ( I mPwSer R ) e. AssAlg -> ( I mPwSer R ) e. Ring ) |
67 |
46
|
subrgmre |
|- ( ( I mPwSer R ) e. Ring -> ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) ) |
68 |
45 66 67
|
3syl |
|- ( ph -> ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) ) |
69 |
28
|
frnd |
|- ( ph -> ran A C_ ( Base ` P ) ) |
70 |
63 69
|
eqsstrrd |
|- ( ph -> ran ( algSc ` ( I mPwSer R ) ) C_ ( Base ` P ) ) |
71 |
32
|
frnd |
|- ( ph -> ran V C_ ( Base ` P ) ) |
72 |
70 71
|
unssd |
|- ( ph -> ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) C_ ( Base ` P ) ) |
73 |
|
eqid |
|- ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) = ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) |
74 |
51 73
|
submrc |
|- ( ( ( SubRing ` ( I mPwSer R ) ) e. ( Moore ` ( Base ` ( I mPwSer R ) ) ) /\ ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) C_ ( Base ` P ) ) -> ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
75 |
68 55 72 74
|
syl3anc |
|- ( ph -> ( ( mrCls ` ( ( SubRing ` ( I mPwSer R ) ) i^i ~P ( Base ` P ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) ) |
76 |
65 75
|
eqtr2d |
|- ( ph -> ( ( mrCls ` ( SubRing ` ( I mPwSer R ) ) ) ` ( ran ( algSc ` ( I mPwSer R ) ) u. ran V ) ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
77 |
53 54 76
|
3eqtr3d |
|- ( ph -> ( Base ` P ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( Base ` P ) = ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) ) |
79 |
1
|
mplring |
|- ( ( I e. W /\ R e. Ring ) -> P e. Ring ) |
80 |
5 27 79
|
syl2anc |
|- ( ph -> P e. Ring ) |
81 |
10
|
subrgmre |
|- ( P e. Ring -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
82 |
80 81
|
syl |
|- ( ph -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
83 |
82
|
ad2antrr |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) ) |
84 |
|
simpr |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( ran A u. ran V ) C_ dom ( m i^i n ) ) |
85 |
|
rhmeql |
|- ( ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) -> dom ( m i^i n ) e. ( SubRing ` P ) ) |
86 |
85
|
ad2antlr |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> dom ( m i^i n ) e. ( SubRing ` P ) ) |
87 |
|
eqid |
|- ( mrCls ` ( SubRing ` P ) ) = ( mrCls ` ( SubRing ` P ) ) |
88 |
87
|
mrcsscl |
|- ( ( ( SubRing ` P ) e. ( Moore ` ( Base ` P ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) /\ dom ( m i^i n ) e. ( SubRing ` P ) ) -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) C_ dom ( m i^i n ) ) |
89 |
83 84 86 88
|
syl3anc |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( ( mrCls ` ( SubRing ` P ) ) ` ( ran A u. ran V ) ) C_ dom ( m i^i n ) ) |
90 |
78 89
|
eqsstrd |
|- ( ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) /\ ( ran A u. ran V ) C_ dom ( m i^i n ) ) -> ( Base ` P ) C_ dom ( m i^i n ) ) |
91 |
90
|
ex |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( ran A u. ran V ) C_ dom ( m i^i n ) -> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
92 |
|
simprl |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> m e. ( P RingHom S ) ) |
93 |
10 2
|
rhmf |
|- ( m e. ( P RingHom S ) -> m : ( Base ` P ) --> C ) |
94 |
|
ffn |
|- ( m : ( Base ` P ) --> C -> m Fn ( Base ` P ) ) |
95 |
92 93 94
|
3syl |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> m Fn ( Base ` P ) ) |
96 |
|
simprr |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> n e. ( P RingHom S ) ) |
97 |
10 2
|
rhmf |
|- ( n e. ( P RingHom S ) -> n : ( Base ` P ) --> C ) |
98 |
|
ffn |
|- ( n : ( Base ` P ) --> C -> n Fn ( Base ` P ) ) |
99 |
96 97 98
|
3syl |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> n Fn ( Base ` P ) ) |
100 |
69
|
adantr |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ran A C_ ( Base ` P ) ) |
101 |
71
|
adantr |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ran V C_ ( Base ` P ) ) |
102 |
100 101
|
unssd |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ran A u. ran V ) C_ ( Base ` P ) ) |
103 |
|
fnreseql |
|- ( ( m Fn ( Base ` P ) /\ n Fn ( Base ` P ) /\ ( ran A u. ran V ) C_ ( Base ` P ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) <-> ( ran A u. ran V ) C_ dom ( m i^i n ) ) ) |
104 |
95 99 102 103
|
syl3anc |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) <-> ( ran A u. ran V ) C_ dom ( m i^i n ) ) ) |
105 |
|
fneqeql2 |
|- ( ( m Fn ( Base ` P ) /\ n Fn ( Base ` P ) ) -> ( m = n <-> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
106 |
95 99 105
|
syl2anc |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( m = n <-> ( Base ` P ) C_ dom ( m i^i n ) ) ) |
107 |
91 104 106
|
3imtr4d |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) -> m = n ) ) |
108 |
43 107
|
syl5 |
|- ( ( ph /\ ( m e. ( P RingHom S ) /\ n e. ( P RingHom S ) ) ) -> ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
109 |
108
|
ralrimivva |
|- ( ph -> A. m e. ( P RingHom S ) A. n e. ( P RingHom S ) ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
110 |
|
reseq1 |
|- ( m = n -> ( m |` ( ran A u. ran V ) ) = ( n |` ( ran A u. ran V ) ) ) |
111 |
110
|
eqeq1d |
|- ( m = n -> ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) <-> ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) ) |
112 |
111
|
rmo4 |
|- ( E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) <-> A. m e. ( P RingHom S ) A. n e. ( P RingHom S ) ( ( ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) /\ ( n |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> m = n ) ) |
113 |
109 112
|
sylibr |
|- ( ph -> E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) |
114 |
|
rmoim |
|- ( A. m e. ( P RingHom S ) ( ( ( m o. A ) = F /\ ( m o. V ) = G ) -> ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) ) -> ( E* m e. ( P RingHom S ) ( m |` ( ran A u. ran V ) ) = ( ( F o. `' A ) u. ( G o. `' V ) ) -> E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) ) |
115 |
42 113 114
|
sylc |
|- ( ph -> E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |
116 |
|
reu5 |
|- ( E! m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) <-> ( E. m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) /\ E* m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) ) |
117 |
24 115 116
|
sylanbrc |
|- ( ph -> E! m e. ( P RingHom S ) ( ( m o. A ) = F /\ ( m o. V ) = G ) ) |