Metamath Proof Explorer


Theorem evlsgsumadd

Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsumadd.q
|- Q = ( ( I evalSub S ) ` R )
evlsgsumadd.w
|- W = ( I mPoly U )
evlsgsumadd.0
|- .0. = ( 0g ` W )
evlsgsumadd.u
|- U = ( S |`s R )
evlsgsumadd.p
|- P = ( S ^s ( K ^m I ) )
evlsgsumadd.k
|- K = ( Base ` S )
evlsgsumadd.b
|- B = ( Base ` W )
evlsgsumadd.i
|- ( ph -> I e. V )
evlsgsumadd.s
|- ( ph -> S e. CRing )
evlsgsumadd.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsgsumadd.y
|- ( ( ph /\ x e. N ) -> Y e. B )
evlsgsumadd.n
|- ( ph -> N C_ NN0 )
evlsgsumadd.f
|- ( ph -> ( x e. N |-> Y ) finSupp .0. )
Assertion evlsgsumadd
|- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsgsumadd.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsgsumadd.w
 |-  W = ( I mPoly U )
3 evlsgsumadd.0
 |-  .0. = ( 0g ` W )
4 evlsgsumadd.u
 |-  U = ( S |`s R )
5 evlsgsumadd.p
 |-  P = ( S ^s ( K ^m I ) )
6 evlsgsumadd.k
 |-  K = ( Base ` S )
7 evlsgsumadd.b
 |-  B = ( Base ` W )
8 evlsgsumadd.i
 |-  ( ph -> I e. V )
9 evlsgsumadd.s
 |-  ( ph -> S e. CRing )
10 evlsgsumadd.r
 |-  ( ph -> R e. ( SubRing ` S ) )
11 evlsgsumadd.y
 |-  ( ( ph /\ x e. N ) -> Y e. B )
12 evlsgsumadd.n
 |-  ( ph -> N C_ NN0 )
13 evlsgsumadd.f
 |-  ( ph -> ( x e. N |-> Y ) finSupp .0. )
14 4 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
15 10 14 syl
 |-  ( ph -> U e. Ring )
16 2 mplring
 |-  ( ( I e. V /\ U e. Ring ) -> W e. Ring )
17 8 15 16 syl2anc
 |-  ( ph -> W e. Ring )
18 ringcmn
 |-  ( W e. Ring -> W e. CMnd )
19 17 18 syl
 |-  ( ph -> W e. CMnd )
20 crngring
 |-  ( S e. CRing -> S e. Ring )
21 9 20 syl
 |-  ( ph -> S e. Ring )
22 ovex
 |-  ( K ^m I ) e. _V
23 21 22 jctir
 |-  ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) )
24 5 pwsring
 |-  ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring )
25 ringmnd
 |-  ( P e. Ring -> P e. Mnd )
26 23 24 25 3syl
 |-  ( ph -> P e. Mnd )
27 nn0ex
 |-  NN0 e. _V
28 27 a1i
 |-  ( ph -> NN0 e. _V )
29 28 12 ssexd
 |-  ( ph -> N e. _V )
30 1 2 4 5 6 evlsrhm
 |-  ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) )
31 8 9 10 30 syl3anc
 |-  ( ph -> Q e. ( W RingHom P ) )
32 rhmghm
 |-  ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) )
33 ghmmhm
 |-  ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) )
34 31 32 33 3syl
 |-  ( ph -> Q e. ( W MndHom P ) )
35 7 3 19 26 29 34 11 13 gsummptmhm
 |-  ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) )
36 35 eqcomd
 |-  ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) )