| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlsgsummul.q |  |-  Q = ( ( I evalSub S ) ` R ) | 
						
							| 2 |  | evlsgsummul.w |  |-  W = ( I mPoly U ) | 
						
							| 3 |  | evlsgsummul.g |  |-  G = ( mulGrp ` W ) | 
						
							| 4 |  | evlsgsummul.1 |  |-  .1. = ( 1r ` W ) | 
						
							| 5 |  | evlsgsummul.u |  |-  U = ( S |`s R ) | 
						
							| 6 |  | evlsgsummul.p |  |-  P = ( S ^s ( K ^m I ) ) | 
						
							| 7 |  | evlsgsummul.h |  |-  H = ( mulGrp ` P ) | 
						
							| 8 |  | evlsgsummul.k |  |-  K = ( Base ` S ) | 
						
							| 9 |  | evlsgsummul.b |  |-  B = ( Base ` W ) | 
						
							| 10 |  | evlsgsummul.i |  |-  ( ph -> I e. V ) | 
						
							| 11 |  | evlsgsummul.s |  |-  ( ph -> S e. CRing ) | 
						
							| 12 |  | evlsgsummul.r |  |-  ( ph -> R e. ( SubRing ` S ) ) | 
						
							| 13 |  | evlsgsummul.y |  |-  ( ( ph /\ x e. N ) -> Y e. B ) | 
						
							| 14 |  | evlsgsummul.n |  |-  ( ph -> N C_ NN0 ) | 
						
							| 15 |  | evlsgsummul.f |  |-  ( ph -> ( x e. N |-> Y ) finSupp .1. ) | 
						
							| 16 | 3 9 | mgpbas |  |-  B = ( Base ` G ) | 
						
							| 17 | 3 4 | ringidval |  |-  .1. = ( 0g ` G ) | 
						
							| 18 | 5 | subrgcrng |  |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) | 
						
							| 19 | 11 12 18 | syl2anc |  |-  ( ph -> U e. CRing ) | 
						
							| 20 | 2 | mplcrng |  |-  ( ( I e. V /\ U e. CRing ) -> W e. CRing ) | 
						
							| 21 | 10 19 20 | syl2anc |  |-  ( ph -> W e. CRing ) | 
						
							| 22 | 3 | crngmgp |  |-  ( W e. CRing -> G e. CMnd ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> G e. CMnd ) | 
						
							| 24 |  | crngring |  |-  ( S e. CRing -> S e. Ring ) | 
						
							| 25 | 11 24 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 26 |  | ovex |  |-  ( K ^m I ) e. _V | 
						
							| 27 | 25 26 | jctir |  |-  ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) ) | 
						
							| 28 | 6 | pwsring |  |-  ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring ) | 
						
							| 29 | 7 | ringmgp |  |-  ( P e. Ring -> H e. Mnd ) | 
						
							| 30 | 27 28 29 | 3syl |  |-  ( ph -> H e. Mnd ) | 
						
							| 31 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ph -> NN0 e. _V ) | 
						
							| 33 | 32 14 | ssexd |  |-  ( ph -> N e. _V ) | 
						
							| 34 | 1 2 5 6 8 | evlsrhm |  |-  ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) | 
						
							| 35 | 10 11 12 34 | syl3anc |  |-  ( ph -> Q e. ( W RingHom P ) ) | 
						
							| 36 | 3 7 | rhmmhm |  |-  ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> Q e. ( G MndHom H ) ) | 
						
							| 38 | 16 17 23 30 33 37 13 15 | gsummptmhm |  |-  ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |