Metamath Proof Explorer


Theorem evlsgsummul

Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsummul.q
|- Q = ( ( I evalSub S ) ` R )
evlsgsummul.w
|- W = ( I mPoly U )
evlsgsummul.g
|- G = ( mulGrp ` W )
evlsgsummul.1
|- .1. = ( 1r ` W )
evlsgsummul.u
|- U = ( S |`s R )
evlsgsummul.p
|- P = ( S ^s ( K ^m I ) )
evlsgsummul.h
|- H = ( mulGrp ` P )
evlsgsummul.k
|- K = ( Base ` S )
evlsgsummul.b
|- B = ( Base ` W )
evlsgsummul.i
|- ( ph -> I e. V )
evlsgsummul.s
|- ( ph -> S e. CRing )
evlsgsummul.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsgsummul.y
|- ( ( ph /\ x e. N ) -> Y e. B )
evlsgsummul.n
|- ( ph -> N C_ NN0 )
evlsgsummul.f
|- ( ph -> ( x e. N |-> Y ) finSupp .1. )
Assertion evlsgsummul
|- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsgsummul.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsgsummul.w
 |-  W = ( I mPoly U )
3 evlsgsummul.g
 |-  G = ( mulGrp ` W )
4 evlsgsummul.1
 |-  .1. = ( 1r ` W )
5 evlsgsummul.u
 |-  U = ( S |`s R )
6 evlsgsummul.p
 |-  P = ( S ^s ( K ^m I ) )
7 evlsgsummul.h
 |-  H = ( mulGrp ` P )
8 evlsgsummul.k
 |-  K = ( Base ` S )
9 evlsgsummul.b
 |-  B = ( Base ` W )
10 evlsgsummul.i
 |-  ( ph -> I e. V )
11 evlsgsummul.s
 |-  ( ph -> S e. CRing )
12 evlsgsummul.r
 |-  ( ph -> R e. ( SubRing ` S ) )
13 evlsgsummul.y
 |-  ( ( ph /\ x e. N ) -> Y e. B )
14 evlsgsummul.n
 |-  ( ph -> N C_ NN0 )
15 evlsgsummul.f
 |-  ( ph -> ( x e. N |-> Y ) finSupp .1. )
16 3 9 mgpbas
 |-  B = ( Base ` G )
17 3 4 ringidval
 |-  .1. = ( 0g ` G )
18 5 subrgcrng
 |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing )
19 11 12 18 syl2anc
 |-  ( ph -> U e. CRing )
20 2 mplcrng
 |-  ( ( I e. V /\ U e. CRing ) -> W e. CRing )
21 10 19 20 syl2anc
 |-  ( ph -> W e. CRing )
22 3 crngmgp
 |-  ( W e. CRing -> G e. CMnd )
23 21 22 syl
 |-  ( ph -> G e. CMnd )
24 crngring
 |-  ( S e. CRing -> S e. Ring )
25 11 24 syl
 |-  ( ph -> S e. Ring )
26 ovex
 |-  ( K ^m I ) e. _V
27 25 26 jctir
 |-  ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) )
28 6 pwsring
 |-  ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring )
29 7 ringmgp
 |-  ( P e. Ring -> H e. Mnd )
30 27 28 29 3syl
 |-  ( ph -> H e. Mnd )
31 nn0ex
 |-  NN0 e. _V
32 31 a1i
 |-  ( ph -> NN0 e. _V )
33 32 14 ssexd
 |-  ( ph -> N e. _V )
34 1 2 5 6 8 evlsrhm
 |-  ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) )
35 10 11 12 34 syl3anc
 |-  ( ph -> Q e. ( W RingHom P ) )
36 3 7 rhmmhm
 |-  ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) )
37 35 36 syl
 |-  ( ph -> Q e. ( G MndHom H ) )
38 16 17 23 30 33 37 13 15 gsummptmhm
 |-  ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) )
39 38 eqcomd
 |-  ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) )