Step |
Hyp |
Ref |
Expression |
1 |
|
evlsgsummul.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsgsummul.w |
|- W = ( I mPoly U ) |
3 |
|
evlsgsummul.g |
|- G = ( mulGrp ` W ) |
4 |
|
evlsgsummul.1 |
|- .1. = ( 1r ` W ) |
5 |
|
evlsgsummul.u |
|- U = ( S |`s R ) |
6 |
|
evlsgsummul.p |
|- P = ( S ^s ( K ^m I ) ) |
7 |
|
evlsgsummul.h |
|- H = ( mulGrp ` P ) |
8 |
|
evlsgsummul.k |
|- K = ( Base ` S ) |
9 |
|
evlsgsummul.b |
|- B = ( Base ` W ) |
10 |
|
evlsgsummul.i |
|- ( ph -> I e. V ) |
11 |
|
evlsgsummul.s |
|- ( ph -> S e. CRing ) |
12 |
|
evlsgsummul.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
13 |
|
evlsgsummul.y |
|- ( ( ph /\ x e. N ) -> Y e. B ) |
14 |
|
evlsgsummul.n |
|- ( ph -> N C_ NN0 ) |
15 |
|
evlsgsummul.f |
|- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
16 |
3 9
|
mgpbas |
|- B = ( Base ` G ) |
17 |
3 4
|
ringidval |
|- .1. = ( 0g ` G ) |
18 |
5
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
19 |
11 12 18
|
syl2anc |
|- ( ph -> U e. CRing ) |
20 |
2
|
mplcrng |
|- ( ( I e. V /\ U e. CRing ) -> W e. CRing ) |
21 |
10 19 20
|
syl2anc |
|- ( ph -> W e. CRing ) |
22 |
3
|
crngmgp |
|- ( W e. CRing -> G e. CMnd ) |
23 |
21 22
|
syl |
|- ( ph -> G e. CMnd ) |
24 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
25 |
11 24
|
syl |
|- ( ph -> S e. Ring ) |
26 |
|
ovex |
|- ( K ^m I ) e. _V |
27 |
25 26
|
jctir |
|- ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) ) |
28 |
6
|
pwsring |
|- ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring ) |
29 |
7
|
ringmgp |
|- ( P e. Ring -> H e. Mnd ) |
30 |
27 28 29
|
3syl |
|- ( ph -> H e. Mnd ) |
31 |
|
nn0ex |
|- NN0 e. _V |
32 |
31
|
a1i |
|- ( ph -> NN0 e. _V ) |
33 |
32 14
|
ssexd |
|- ( ph -> N e. _V ) |
34 |
1 2 5 6 8
|
evlsrhm |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
35 |
10 11 12 34
|
syl3anc |
|- ( ph -> Q e. ( W RingHom P ) ) |
36 |
3 7
|
rhmmhm |
|- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
37 |
35 36
|
syl |
|- ( ph -> Q e. ( G MndHom H ) ) |
38 |
16 17 23 30 33 37 13 15
|
gsummptmhm |
|- ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) ) |
39 |
38
|
eqcomd |
|- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |