Metamath Proof Explorer


Theorem evlslem3

Description: Lemma for evlseu . Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem3.p
|- P = ( I mPoly R )
evlslem3.b
|- B = ( Base ` P )
evlslem3.c
|- C = ( Base ` S )
evlslem3.k
|- K = ( Base ` R )
evlslem3.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlslem3.t
|- T = ( mulGrp ` S )
evlslem3.x
|- .^ = ( .g ` T )
evlslem3.m
|- .x. = ( .r ` S )
evlslem3.v
|- V = ( I mVar R )
evlslem3.e
|- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
evlslem3.i
|- ( ph -> I e. W )
evlslem3.r
|- ( ph -> R e. CRing )
evlslem3.s
|- ( ph -> S e. CRing )
evlslem3.f
|- ( ph -> F e. ( R RingHom S ) )
evlslem3.g
|- ( ph -> G : I --> C )
evlslem3.z
|- .0. = ( 0g ` R )
evlslem3.a
|- ( ph -> A e. D )
evlslem3.q
|- ( ph -> H e. K )
Assertion evlslem3
|- ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) )

Proof

Step Hyp Ref Expression
1 evlslem3.p
 |-  P = ( I mPoly R )
2 evlslem3.b
 |-  B = ( Base ` P )
3 evlslem3.c
 |-  C = ( Base ` S )
4 evlslem3.k
 |-  K = ( Base ` R )
5 evlslem3.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
6 evlslem3.t
 |-  T = ( mulGrp ` S )
7 evlslem3.x
 |-  .^ = ( .g ` T )
8 evlslem3.m
 |-  .x. = ( .r ` S )
9 evlslem3.v
 |-  V = ( I mVar R )
10 evlslem3.e
 |-  E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
11 evlslem3.i
 |-  ( ph -> I e. W )
12 evlslem3.r
 |-  ( ph -> R e. CRing )
13 evlslem3.s
 |-  ( ph -> S e. CRing )
14 evlslem3.f
 |-  ( ph -> F e. ( R RingHom S ) )
15 evlslem3.g
 |-  ( ph -> G : I --> C )
16 evlslem3.z
 |-  .0. = ( 0g ` R )
17 evlslem3.a
 |-  ( ph -> A e. D )
18 evlslem3.q
 |-  ( ph -> H e. K )
19 crngring
 |-  ( R e. CRing -> R e. Ring )
20 12 19 syl
 |-  ( ph -> R e. Ring )
21 1 5 16 4 11 20 2 18 17 mplmon2cl
 |-  ( ph -> ( x e. D |-> if ( x = A , H , .0. ) ) e. B )
22 fveq1
 |-  ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( p ` b ) = ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) )
23 22 fveq2d
 |-  ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( F ` ( p ` b ) ) = ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) )
24 23 oveq1d
 |-  ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) )
25 24 mpteq2dv
 |-  ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) )
26 25 oveq2d
 |-  ( p = ( x e. D |-> if ( x = A , H , .0. ) ) -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
27 ovex
 |-  ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V
28 26 10 27 fvmpt
 |-  ( ( x e. D |-> if ( x = A , H , .0. ) ) e. B -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
29 21 28 syl
 |-  ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
30 eqid
 |-  ( x e. D |-> if ( x = A , H , .0. ) ) = ( x e. D |-> if ( x = A , H , .0. ) )
31 eqeq1
 |-  ( x = b -> ( x = A <-> b = A ) )
32 31 ifbid
 |-  ( x = b -> if ( x = A , H , .0. ) = if ( b = A , H , .0. ) )
33 simpr
 |-  ( ( ph /\ b e. D ) -> b e. D )
34 16 fvexi
 |-  .0. e. _V
35 34 a1i
 |-  ( ph -> .0. e. _V )
36 18 35 ifexd
 |-  ( ph -> if ( b = A , H , .0. ) e. _V )
37 36 adantr
 |-  ( ( ph /\ b e. D ) -> if ( b = A , H , .0. ) e. _V )
38 30 32 33 37 fvmptd3
 |-  ( ( ph /\ b e. D ) -> ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) = if ( b = A , H , .0. ) )
39 38 fveq2d
 |-  ( ( ph /\ b e. D ) -> ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) = ( F ` if ( b = A , H , .0. ) ) )
40 39 oveq1d
 |-  ( ( ph /\ b e. D ) -> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) )
41 40 mpteq2dva
 |-  ( ph -> ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) )
42 41 oveq2d
 |-  ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) )
43 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
44 crngring
 |-  ( S e. CRing -> S e. Ring )
45 13 44 syl
 |-  ( ph -> S e. Ring )
46 ringmnd
 |-  ( S e. Ring -> S e. Mnd )
47 45 46 syl
 |-  ( ph -> S e. Mnd )
48 ovex
 |-  ( NN0 ^m I ) e. _V
49 5 48 rabex2
 |-  D e. _V
50 49 a1i
 |-  ( ph -> D e. _V )
51 45 adantr
 |-  ( ( ph /\ b e. D ) -> S e. Ring )
52 4 3 rhmf
 |-  ( F e. ( R RingHom S ) -> F : K --> C )
53 14 52 syl
 |-  ( ph -> F : K --> C )
54 4 16 ring0cl
 |-  ( R e. Ring -> .0. e. K )
55 20 54 syl
 |-  ( ph -> .0. e. K )
56 18 55 ifcld
 |-  ( ph -> if ( b = A , H , .0. ) e. K )
57 53 56 ffvelrnd
 |-  ( ph -> ( F ` if ( b = A , H , .0. ) ) e. C )
58 57 adantr
 |-  ( ( ph /\ b e. D ) -> ( F ` if ( b = A , H , .0. ) ) e. C )
59 6 3 mgpbas
 |-  C = ( Base ` T )
60 eqid
 |-  ( 0g ` T ) = ( 0g ` T )
61 6 crngmgp
 |-  ( S e. CRing -> T e. CMnd )
62 13 61 syl
 |-  ( ph -> T e. CMnd )
63 62 adantr
 |-  ( ( ph /\ b e. D ) -> T e. CMnd )
64 11 adantr
 |-  ( ( ph /\ b e. D ) -> I e. W )
65 cmnmnd
 |-  ( T e. CMnd -> T e. Mnd )
66 62 65 syl
 |-  ( ph -> T e. Mnd )
67 66 ad2antrr
 |-  ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> T e. Mnd )
68 simprl
 |-  ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> y e. NN0 )
69 simprr
 |-  ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> z e. C )
70 59 7 mulgnn0cl
 |-  ( ( T e. Mnd /\ y e. NN0 /\ z e. C ) -> ( y .^ z ) e. C )
71 67 68 69 70 syl3anc
 |-  ( ( ( ph /\ b e. D ) /\ ( y e. NN0 /\ z e. C ) ) -> ( y .^ z ) e. C )
72 5 psrbagf
 |-  ( b e. D -> b : I --> NN0 )
73 72 adantl
 |-  ( ( ph /\ b e. D ) -> b : I --> NN0 )
74 15 adantr
 |-  ( ( ph /\ b e. D ) -> G : I --> C )
75 inidm
 |-  ( I i^i I ) = I
76 71 73 74 64 64 75 off
 |-  ( ( ph /\ b e. D ) -> ( b oF .^ G ) : I --> C )
77 ovex
 |-  ( b oF .^ G ) e. _V
78 77 a1i
 |-  ( ( ph /\ b e. D ) -> ( b oF .^ G ) e. _V )
79 76 ffund
 |-  ( ( ph /\ b e. D ) -> Fun ( b oF .^ G ) )
80 fvexd
 |-  ( ( ph /\ b e. D ) -> ( 0g ` T ) e. _V )
81 5 psrbag
 |-  ( I e. W -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) )
82 11 81 syl
 |-  ( ph -> ( b e. D <-> ( b : I --> NN0 /\ ( `' b " NN ) e. Fin ) ) )
83 82 simplbda
 |-  ( ( ph /\ b e. D ) -> ( `' b " NN ) e. Fin )
84 73 ffnd
 |-  ( ( ph /\ b e. D ) -> b Fn I )
85 84 adantr
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> b Fn I )
86 15 ffnd
 |-  ( ph -> G Fn I )
87 86 ad2antrr
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> G Fn I )
88 11 ad2antrr
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> I e. W )
89 eldifi
 |-  ( y e. ( I \ ( `' b " NN ) ) -> y e. I )
90 89 adantl
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> y e. I )
91 fnfvof
 |-  ( ( ( b Fn I /\ G Fn I ) /\ ( I e. W /\ y e. I ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) )
92 85 87 88 90 91 syl22anc
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( ( b ` y ) .^ ( G ` y ) ) )
93 ffvelrn
 |-  ( ( b : I --> NN0 /\ y e. I ) -> ( b ` y ) e. NN0 )
94 73 89 93 syl2an
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) e. NN0 )
95 elnn0
 |-  ( ( b ` y ) e. NN0 <-> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) )
96 94 95 sylib
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) e. NN \/ ( b ` y ) = 0 ) )
97 eldifn
 |-  ( y e. ( I \ ( `' b " NN ) ) -> -. y e. ( `' b " NN ) )
98 97 adantl
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. y e. ( `' b " NN ) )
99 84 ad2antrr
 |-  ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> b Fn I )
100 89 ad2antlr
 |-  ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. I )
101 simpr
 |-  ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> ( b ` y ) e. NN )
102 99 100 101 elpreimad
 |-  ( ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) /\ ( b ` y ) e. NN ) -> y e. ( `' b " NN ) )
103 98 102 mtand
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> -. ( b ` y ) e. NN )
104 96 103 orcnd
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( b ` y ) = 0 )
105 104 oveq1d
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b ` y ) .^ ( G ` y ) ) = ( 0 .^ ( G ` y ) ) )
106 ffvelrn
 |-  ( ( G : I --> C /\ y e. I ) -> ( G ` y ) e. C )
107 74 89 106 syl2an
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( G ` y ) e. C )
108 59 60 7 mulg0
 |-  ( ( G ` y ) e. C -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) )
109 107 108 syl
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( 0 .^ ( G ` y ) ) = ( 0g ` T ) )
110 92 105 109 3eqtrd
 |-  ( ( ( ph /\ b e. D ) /\ y e. ( I \ ( `' b " NN ) ) ) -> ( ( b oF .^ G ) ` y ) = ( 0g ` T ) )
111 76 110 suppss
 |-  ( ( ph /\ b e. D ) -> ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) )
112 suppssfifsupp
 |-  ( ( ( ( b oF .^ G ) e. _V /\ Fun ( b oF .^ G ) /\ ( 0g ` T ) e. _V ) /\ ( ( `' b " NN ) e. Fin /\ ( ( b oF .^ G ) supp ( 0g ` T ) ) C_ ( `' b " NN ) ) ) -> ( b oF .^ G ) finSupp ( 0g ` T ) )
113 78 79 80 83 111 112 syl32anc
 |-  ( ( ph /\ b e. D ) -> ( b oF .^ G ) finSupp ( 0g ` T ) )
114 59 60 63 64 76 113 gsumcl
 |-  ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C )
115 3 8 ringcl
 |-  ( ( S e. Ring /\ ( F ` if ( b = A , H , .0. ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C )
116 51 58 114 115 syl3anc
 |-  ( ( ph /\ b e. D ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C )
117 116 fmpttd
 |-  ( ph -> ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C )
118 eldifsnneq
 |-  ( b e. ( D \ { A } ) -> -. b = A )
119 118 iffalsed
 |-  ( b e. ( D \ { A } ) -> if ( b = A , H , .0. ) = .0. )
120 119 adantl
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> if ( b = A , H , .0. ) = .0. )
121 120 fveq2d
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( F ` .0. ) )
122 rhmghm
 |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) )
123 14 122 syl
 |-  ( ph -> F e. ( R GrpHom S ) )
124 16 43 ghmid
 |-  ( F e. ( R GrpHom S ) -> ( F ` .0. ) = ( 0g ` S ) )
125 123 124 syl
 |-  ( ph -> ( F ` .0. ) = ( 0g ` S ) )
126 125 adantr
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` .0. ) = ( 0g ` S ) )
127 121 126 eqtrd
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( F ` if ( b = A , H , .0. ) ) = ( 0g ` S ) )
128 127 oveq1d
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) )
129 45 adantr
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> S e. Ring )
130 eldifi
 |-  ( b e. ( D \ { A } ) -> b e. D )
131 130 114 sylan2
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( T gsum ( b oF .^ G ) ) e. C )
132 3 8 43 ringlz
 |-  ( ( S e. Ring /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) )
133 129 131 132 syl2anc
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( 0g ` S ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) )
134 128 133 eqtrd
 |-  ( ( ph /\ b e. ( D \ { A } ) ) -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( 0g ` S ) )
135 134 50 suppss2
 |-  ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ { A } )
136 3 43 47 50 17 117 135 gsumpt
 |-  ( ph -> ( S gsum ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) )
137 42 136 eqtrd
 |-  ( ph -> ( S gsum ( b e. D |-> ( ( F ` ( ( x e. D |-> if ( x = A , H , .0. ) ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) )
138 iftrue
 |-  ( b = A -> if ( b = A , H , .0. ) = H )
139 138 fveq2d
 |-  ( b = A -> ( F ` if ( b = A , H , .0. ) ) = ( F ` H ) )
140 oveq1
 |-  ( b = A -> ( b oF .^ G ) = ( A oF .^ G ) )
141 140 oveq2d
 |-  ( b = A -> ( T gsum ( b oF .^ G ) ) = ( T gsum ( A oF .^ G ) ) )
142 139 141 oveq12d
 |-  ( b = A -> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) )
143 eqid
 |-  ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) )
144 ovex
 |-  ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) e. _V
145 142 143 144 fvmpt
 |-  ( A e. D -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) )
146 17 145 syl
 |-  ( ph -> ( ( b e. D |-> ( ( F ` if ( b = A , H , .0. ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ` A ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) )
147 29 137 146 3eqtrd
 |-  ( ph -> ( E ` ( x e. D |-> if ( x = A , H , .0. ) ) ) = ( ( F ` H ) .x. ( T gsum ( A oF .^ G ) ) ) )