Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem4.b |
|- B = ( Base ` R ) |
2 |
|
evlslem4.z |
|- .0. = ( 0g ` R ) |
3 |
|
evlslem4.t |
|- .x. = ( .r ` R ) |
4 |
|
evlslem4.r |
|- ( ph -> R e. Ring ) |
5 |
|
evlslem4.x |
|- ( ( ph /\ x e. I ) -> X e. B ) |
6 |
|
evlslem4.y |
|- ( ( ph /\ y e. J ) -> Y e. B ) |
7 |
|
evlslem4.i |
|- ( ph -> I e. V ) |
8 |
|
evlslem4.j |
|- ( ph -> J e. W ) |
9 |
|
simp2 |
|- ( ( ph /\ x e. I /\ y e. J ) -> x e. I ) |
10 |
5
|
3adant3 |
|- ( ( ph /\ x e. I /\ y e. J ) -> X e. B ) |
11 |
|
eqid |
|- ( x e. I |-> X ) = ( x e. I |-> X ) |
12 |
11
|
fvmpt2 |
|- ( ( x e. I /\ X e. B ) -> ( ( x e. I |-> X ) ` x ) = X ) |
13 |
9 10 12
|
syl2anc |
|- ( ( ph /\ x e. I /\ y e. J ) -> ( ( x e. I |-> X ) ` x ) = X ) |
14 |
|
simp3 |
|- ( ( ph /\ x e. I /\ y e. J ) -> y e. J ) |
15 |
|
eqid |
|- ( y e. J |-> Y ) = ( y e. J |-> Y ) |
16 |
15
|
fvmpt2 |
|- ( ( y e. J /\ Y e. B ) -> ( ( y e. J |-> Y ) ` y ) = Y ) |
17 |
14 6 16
|
3imp3i2an |
|- ( ( ph /\ x e. I /\ y e. J ) -> ( ( y e. J |-> Y ) ` y ) = Y ) |
18 |
13 17
|
oveq12d |
|- ( ( ph /\ x e. I /\ y e. J ) -> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) = ( X .x. Y ) ) |
19 |
18
|
mpoeq3dva |
|- ( ph -> ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( x e. I , y e. J |-> ( X .x. Y ) ) ) |
20 |
|
nfcv |
|- F/_ i ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) |
21 |
|
nfcv |
|- F/_ j ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) |
22 |
|
nffvmpt1 |
|- F/_ x ( ( x e. I |-> X ) ` i ) |
23 |
|
nfcv |
|- F/_ x .x. |
24 |
|
nfcv |
|- F/_ x ( ( y e. J |-> Y ) ` j ) |
25 |
22 23 24
|
nfov |
|- F/_ x ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) |
26 |
|
nfcv |
|- F/_ y ( ( x e. I |-> X ) ` i ) |
27 |
|
nfcv |
|- F/_ y .x. |
28 |
|
nffvmpt1 |
|- F/_ y ( ( y e. J |-> Y ) ` j ) |
29 |
26 27 28
|
nfov |
|- F/_ y ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) |
30 |
|
fveq2 |
|- ( x = i -> ( ( x e. I |-> X ) ` x ) = ( ( x e. I |-> X ) ` i ) ) |
31 |
|
fveq2 |
|- ( y = j -> ( ( y e. J |-> Y ) ` y ) = ( ( y e. J |-> Y ) ` j ) ) |
32 |
30 31
|
oveqan12d |
|- ( ( x = i /\ y = j ) -> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
33 |
20 21 25 29 32
|
cbvmpo |
|- ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( i e. I , j e. J |-> ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
34 |
|
vex |
|- i e. _V |
35 |
|
vex |
|- j e. _V |
36 |
34 35
|
eqop2 |
|- ( z = <. i , j >. <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) = i /\ ( 2nd ` z ) = j ) ) ) |
37 |
|
fveq2 |
|- ( ( 1st ` z ) = i -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = ( ( x e. I |-> X ) ` i ) ) |
38 |
|
fveq2 |
|- ( ( 2nd ` z ) = j -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = ( ( y e. J |-> Y ) ` j ) ) |
39 |
37 38
|
oveqan12d |
|- ( ( ( 1st ` z ) = i /\ ( 2nd ` z ) = j ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
40 |
36 39
|
simplbiim |
|- ( z = <. i , j >. -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
41 |
40
|
mpompt |
|- ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) = ( i e. I , j e. J |-> ( ( ( x e. I |-> X ) ` i ) .x. ( ( y e. J |-> Y ) ` j ) ) ) |
42 |
33 41
|
eqtr4i |
|- ( x e. I , y e. J |-> ( ( ( x e. I |-> X ) ` x ) .x. ( ( y e. J |-> Y ) ` y ) ) ) = ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) |
43 |
19 42
|
eqtr3di |
|- ( ph -> ( x e. I , y e. J |-> ( X .x. Y ) ) = ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( x e. I , y e. J |-> ( X .x. Y ) ) supp .0. ) = ( ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) supp .0. ) ) |
45 |
|
difxp |
|- ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) = ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) |
46 |
45
|
eleq2i |
|- ( z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) <-> z e. ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
47 |
|
elun |
|- ( z e. ( ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) u. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) <-> ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
48 |
46 47
|
bitri |
|- ( z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) <-> ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) |
49 |
|
xp1st |
|- ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) -> ( 1st ` z ) e. ( I \ ( ( x e. I |-> X ) supp .0. ) ) ) |
50 |
5
|
fmpttd |
|- ( ph -> ( x e. I |-> X ) : I --> B ) |
51 |
|
ssidd |
|- ( ph -> ( ( x e. I |-> X ) supp .0. ) C_ ( ( x e. I |-> X ) supp .0. ) ) |
52 |
2
|
fvexi |
|- .0. e. _V |
53 |
52
|
a1i |
|- ( ph -> .0. e. _V ) |
54 |
50 51 7 53
|
suppssr |
|- ( ( ph /\ ( 1st ` z ) e. ( I \ ( ( x e. I |-> X ) supp .0. ) ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = .0. ) |
55 |
49 54
|
sylan2 |
|- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) = .0. ) |
56 |
55
|
oveq1d |
|- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) |
57 |
6
|
fmpttd |
|- ( ph -> ( y e. J |-> Y ) : J --> B ) |
58 |
|
xp2nd |
|- ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) -> ( 2nd ` z ) e. J ) |
59 |
|
ffvelrn |
|- ( ( ( y e. J |-> Y ) : J --> B /\ ( 2nd ` z ) e. J ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) |
60 |
57 58 59
|
syl2an |
|- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) |
61 |
1 3 2
|
ringlz |
|- ( ( R e. Ring /\ ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) e. B ) -> ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
62 |
4 60 61
|
syl2an2r |
|- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( .0. .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
63 |
56 62
|
eqtrd |
|- ( ( ph /\ z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
64 |
|
xp2nd |
|- ( z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( 2nd ` z ) e. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) |
65 |
|
ssidd |
|- ( ph -> ( ( y e. J |-> Y ) supp .0. ) C_ ( ( y e. J |-> Y ) supp .0. ) ) |
66 |
57 65 8 53
|
suppssr |
|- ( ( ph /\ ( 2nd ` z ) e. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = .0. ) |
67 |
64 66
|
sylan2 |
|- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) = .0. ) |
68 |
67
|
oveq2d |
|- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) ) |
69 |
|
xp1st |
|- ( z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) -> ( 1st ` z ) e. I ) |
70 |
|
ffvelrn |
|- ( ( ( x e. I |-> X ) : I --> B /\ ( 1st ` z ) e. I ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) |
71 |
50 69 70
|
syl2an |
|- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) |
72 |
1 3 2
|
ringrz |
|- ( ( R e. Ring /\ ( ( x e. I |-> X ) ` ( 1st ` z ) ) e. B ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) = .0. ) |
73 |
4 71 72
|
syl2an2r |
|- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. .0. ) = .0. ) |
74 |
68 73
|
eqtrd |
|- ( ( ph /\ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
75 |
63 74
|
jaodan |
|- ( ( ph /\ ( z e. ( ( I \ ( ( x e. I |-> X ) supp .0. ) ) X. J ) \/ z e. ( I X. ( J \ ( ( y e. J |-> Y ) supp .0. ) ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
76 |
48 75
|
sylan2b |
|- ( ( ph /\ z e. ( ( I X. J ) \ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) ) -> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) = .0. ) |
77 |
7 8
|
xpexd |
|- ( ph -> ( I X. J ) e. _V ) |
78 |
76 77
|
suppss2 |
|- ( ph -> ( ( z e. ( I X. J ) |-> ( ( ( x e. I |-> X ) ` ( 1st ` z ) ) .x. ( ( y e. J |-> Y ) ` ( 2nd ` z ) ) ) ) supp .0. ) C_ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) |
79 |
44 78
|
eqsstrd |
|- ( ph -> ( ( x e. I , y e. J |-> ( X .x. Y ) ) supp .0. ) C_ ( ( ( x e. I |-> X ) supp .0. ) X. ( ( y e. J |-> Y ) supp .0. ) ) ) |