Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem1.p |
|- P = ( I mPoly R ) |
2 |
|
evlslem1.b |
|- B = ( Base ` P ) |
3 |
|
evlslem1.c |
|- C = ( Base ` S ) |
4 |
|
evlslem1.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
5 |
|
evlslem1.t |
|- T = ( mulGrp ` S ) |
6 |
|
evlslem1.x |
|- .^ = ( .g ` T ) |
7 |
|
evlslem1.m |
|- .x. = ( .r ` S ) |
8 |
|
evlslem1.v |
|- V = ( I mVar R ) |
9 |
|
evlslem1.e |
|- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
10 |
|
evlslem1.i |
|- ( ph -> I e. W ) |
11 |
|
evlslem1.r |
|- ( ph -> R e. CRing ) |
12 |
|
evlslem1.s |
|- ( ph -> S e. CRing ) |
13 |
|
evlslem1.f |
|- ( ph -> F e. ( R RingHom S ) ) |
14 |
|
evlslem1.g |
|- ( ph -> G : I --> C ) |
15 |
|
evlslem6.y |
|- ( ph -> Y e. B ) |
16 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
17 |
12 16
|
syl |
|- ( ph -> S e. Ring ) |
18 |
17
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. Ring ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
19 3
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> C ) |
21 |
13 20
|
syl |
|- ( ph -> F : ( Base ` R ) --> C ) |
22 |
21
|
adantr |
|- ( ( ph /\ b e. D ) -> F : ( Base ` R ) --> C ) |
23 |
1 19 2 4 15
|
mplelf |
|- ( ph -> Y : D --> ( Base ` R ) ) |
24 |
23
|
ffvelrnda |
|- ( ( ph /\ b e. D ) -> ( Y ` b ) e. ( Base ` R ) ) |
25 |
22 24
|
ffvelrnd |
|- ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. C ) |
26 |
5 3
|
mgpbas |
|- C = ( Base ` T ) |
27 |
5
|
crngmgp |
|- ( S e. CRing -> T e. CMnd ) |
28 |
12 27
|
syl |
|- ( ph -> T e. CMnd ) |
29 |
28
|
adantr |
|- ( ( ph /\ b e. D ) -> T e. CMnd ) |
30 |
|
simpr |
|- ( ( ph /\ b e. D ) -> b e. D ) |
31 |
14
|
adantr |
|- ( ( ph /\ b e. D ) -> G : I --> C ) |
32 |
4 26 6 29 30 31
|
psrbagev2 |
|- ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
33 |
3 7
|
ringcl |
|- ( ( S e. Ring /\ ( F ` ( Y ` b ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
34 |
18 25 32 33
|
syl3anc |
|- ( ( ph /\ b e. D ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) |
35 |
34
|
fmpttd |
|- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
36 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
37 |
4 36
|
rabexd |
|- ( ph -> D e. _V ) |
38 |
37
|
mptexd |
|- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V ) |
39 |
|
funmpt |
|- Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
40 |
39
|
a1i |
|- ( ph -> Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
41 |
|
fvexd |
|- ( ph -> ( 0g ` S ) e. _V ) |
42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
43 |
1 2 42 15 11
|
mplelsfi |
|- ( ph -> Y finSupp ( 0g ` R ) ) |
44 |
43
|
fsuppimpd |
|- ( ph -> ( Y supp ( 0g ` R ) ) e. Fin ) |
45 |
23
|
feqmptd |
|- ( ph -> Y = ( b e. D |-> ( Y ` b ) ) ) |
46 |
45
|
oveq1d |
|- ( ph -> ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) ) |
47 |
|
eqimss2 |
|- ( ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) |
48 |
46 47
|
syl |
|- ( ph -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) |
49 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
50 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
51 |
42 50
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
52 |
13 49 51
|
3syl |
|- ( ph -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
53 |
|
fvexd |
|- ( ( ph /\ b e. D ) -> ( Y ` b ) e. _V ) |
54 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
55 |
48 52 53 54
|
suppssfv |
|- ( ph -> ( ( b e. D |-> ( F ` ( Y ` b ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) |
56 |
3 7 50
|
ringlz |
|- ( ( S e. Ring /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) |
57 |
17 56
|
sylan |
|- ( ( ph /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) |
58 |
|
fvexd |
|- ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. _V ) |
59 |
55 57 58 32 41
|
suppssov1 |
|- ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) |
60 |
|
suppssfifsupp |
|- ( ( ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V /\ Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) /\ ( 0g ` S ) e. _V ) /\ ( ( Y supp ( 0g ` R ) ) e. Fin /\ ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) ) -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
61 |
38 40 41 44 59 60
|
syl32anc |
|- ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
62 |
35 61
|
jca |
|- ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |