| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlslem1.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | evlslem1.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | evlslem1.c |  |-  C = ( Base ` S ) | 
						
							| 4 |  | evlslem1.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 5 |  | evlslem1.t |  |-  T = ( mulGrp ` S ) | 
						
							| 6 |  | evlslem1.x |  |-  .^ = ( .g ` T ) | 
						
							| 7 |  | evlslem1.m |  |-  .x. = ( .r ` S ) | 
						
							| 8 |  | evlslem1.v |  |-  V = ( I mVar R ) | 
						
							| 9 |  | evlslem1.e |  |-  E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) | 
						
							| 10 |  | evlslem1.i |  |-  ( ph -> I e. W ) | 
						
							| 11 |  | evlslem1.r |  |-  ( ph -> R e. CRing ) | 
						
							| 12 |  | evlslem1.s |  |-  ( ph -> S e. CRing ) | 
						
							| 13 |  | evlslem1.f |  |-  ( ph -> F e. ( R RingHom S ) ) | 
						
							| 14 |  | evlslem1.g |  |-  ( ph -> G : I --> C ) | 
						
							| 15 |  | evlslem6.y |  |-  ( ph -> Y e. B ) | 
						
							| 16 |  | crngring |  |-  ( S e. CRing -> S e. Ring ) | 
						
							| 17 | 12 16 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ b e. D ) -> S e. Ring ) | 
						
							| 19 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 20 | 19 3 | rhmf |  |-  ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> C ) | 
						
							| 21 | 13 20 | syl |  |-  ( ph -> F : ( Base ` R ) --> C ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ b e. D ) -> F : ( Base ` R ) --> C ) | 
						
							| 23 | 1 19 2 4 15 | mplelf |  |-  ( ph -> Y : D --> ( Base ` R ) ) | 
						
							| 24 | 23 | ffvelcdmda |  |-  ( ( ph /\ b e. D ) -> ( Y ` b ) e. ( Base ` R ) ) | 
						
							| 25 | 22 24 | ffvelcdmd |  |-  ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. C ) | 
						
							| 26 | 5 3 | mgpbas |  |-  C = ( Base ` T ) | 
						
							| 27 | 5 | crngmgp |  |-  ( S e. CRing -> T e. CMnd ) | 
						
							| 28 | 12 27 | syl |  |-  ( ph -> T e. CMnd ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ b e. D ) -> T e. CMnd ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ b e. D ) -> b e. D ) | 
						
							| 31 | 14 | adantr |  |-  ( ( ph /\ b e. D ) -> G : I --> C ) | 
						
							| 32 | 4 26 6 29 30 31 | psrbagev2 |  |-  ( ( ph /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) | 
						
							| 33 | 3 7 | ringcl |  |-  ( ( S e. Ring /\ ( F ` ( Y ` b ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) | 
						
							| 34 | 18 25 32 33 | syl3anc |  |-  ( ( ph /\ b e. D ) -> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. C ) | 
						
							| 35 | 34 | fmpttd |  |-  ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) | 
						
							| 36 |  | ovexd |  |-  ( ph -> ( NN0 ^m I ) e. _V ) | 
						
							| 37 | 4 36 | rabexd |  |-  ( ph -> D e. _V ) | 
						
							| 38 | 37 | mptexd |  |-  ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V ) | 
						
							| 39 |  | funmpt |  |-  Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) | 
						
							| 40 | 39 | a1i |  |-  ( ph -> Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) | 
						
							| 41 |  | fvexd |  |-  ( ph -> ( 0g ` S ) e. _V ) | 
						
							| 42 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 43 | 1 2 42 15 | mplelsfi |  |-  ( ph -> Y finSupp ( 0g ` R ) ) | 
						
							| 44 | 43 | fsuppimpd |  |-  ( ph -> ( Y supp ( 0g ` R ) ) e. Fin ) | 
						
							| 45 | 23 | feqmptd |  |-  ( ph -> Y = ( b e. D |-> ( Y ` b ) ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ph -> ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) ) | 
						
							| 47 |  | eqimss2 |  |-  ( ( Y supp ( 0g ` R ) ) = ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ph -> ( ( b e. D |-> ( Y ` b ) ) supp ( 0g ` R ) ) C_ ( Y supp ( 0g ` R ) ) ) | 
						
							| 49 |  | rhmghm |  |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) | 
						
							| 50 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 51 | 42 50 | ghmid |  |-  ( F e. ( R GrpHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 52 | 13 49 51 | 3syl |  |-  ( ph -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) | 
						
							| 53 |  | fvexd |  |-  ( ( ph /\ b e. D ) -> ( Y ` b ) e. _V ) | 
						
							| 54 |  | fvexd |  |-  ( ph -> ( 0g ` R ) e. _V ) | 
						
							| 55 | 48 52 53 54 | suppssfv |  |-  ( ph -> ( ( b e. D |-> ( F ` ( Y ` b ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) | 
						
							| 56 | 3 7 50 | ringlz |  |-  ( ( S e. Ring /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) | 
						
							| 57 | 17 56 | sylan |  |-  ( ( ph /\ x e. C ) -> ( ( 0g ` S ) .x. x ) = ( 0g ` S ) ) | 
						
							| 58 |  | fvexd |  |-  ( ( ph /\ b e. D ) -> ( F ` ( Y ` b ) ) e. _V ) | 
						
							| 59 | 55 57 58 32 41 | suppssov1 |  |-  ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) | 
						
							| 60 |  | suppssfifsupp |  |-  ( ( ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) e. _V /\ Fun ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) /\ ( 0g ` S ) e. _V ) /\ ( ( Y supp ( 0g ` R ) ) e. Fin /\ ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) supp ( 0g ` S ) ) C_ ( Y supp ( 0g ` R ) ) ) ) -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) | 
						
							| 61 | 38 40 41 44 59 60 | syl32anc |  |-  ( ph -> ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) | 
						
							| 62 | 35 61 | jca |  |-  ( ph -> ( ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( Y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |