| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlspw.q |  |-  Q = ( ( I evalSub S ) ` R ) | 
						
							| 2 |  | evlspw.w |  |-  W = ( I mPoly U ) | 
						
							| 3 |  | evlspw.g |  |-  G = ( mulGrp ` W ) | 
						
							| 4 |  | evlspw.e |  |-  .^ = ( .g ` G ) | 
						
							| 5 |  | evlspw.u |  |-  U = ( S |`s R ) | 
						
							| 6 |  | evlspw.p |  |-  P = ( S ^s ( K ^m I ) ) | 
						
							| 7 |  | evlspw.h |  |-  H = ( mulGrp ` P ) | 
						
							| 8 |  | evlspw.k |  |-  K = ( Base ` S ) | 
						
							| 9 |  | evlspw.b |  |-  B = ( Base ` W ) | 
						
							| 10 |  | evlspw.i |  |-  ( ph -> I e. V ) | 
						
							| 11 |  | evlspw.s |  |-  ( ph -> S e. CRing ) | 
						
							| 12 |  | evlspw.r |  |-  ( ph -> R e. ( SubRing ` S ) ) | 
						
							| 13 |  | evlspw.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 14 |  | evlspw.x |  |-  ( ph -> X e. B ) | 
						
							| 15 | 1 2 5 6 8 | evlsrhm |  |-  ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) | 
						
							| 16 | 10 11 12 15 | syl3anc |  |-  ( ph -> Q e. ( W RingHom P ) ) | 
						
							| 17 | 3 7 | rhmmhm |  |-  ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> Q e. ( G MndHom H ) ) | 
						
							| 19 | 3 9 | mgpbas |  |-  B = ( Base ` G ) | 
						
							| 20 |  | eqid |  |-  ( .g ` H ) = ( .g ` H ) | 
						
							| 21 | 19 4 20 | mhmmulg |  |-  ( ( Q e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) | 
						
							| 22 | 18 13 14 21 | syl3anc |  |-  ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |