Step |
Hyp |
Ref |
Expression |
1 |
|
evlsscasrng.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsscasrng.o |
|- O = ( I eval S ) |
3 |
|
evlsscasrng.w |
|- W = ( I mPoly U ) |
4 |
|
evlsscasrng.u |
|- U = ( S |`s R ) |
5 |
|
evlsscasrng.p |
|- P = ( I mPoly S ) |
6 |
|
evlsscasrng.b |
|- B = ( Base ` S ) |
7 |
|
evlsscasrng.a |
|- A = ( algSc ` W ) |
8 |
|
evlsscasrng.c |
|- C = ( algSc ` P ) |
9 |
|
evlsscasrng.i |
|- ( ph -> I e. V ) |
10 |
|
evlsscasrng.s |
|- ( ph -> S e. CRing ) |
11 |
|
evlsscasrng.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
12 |
|
evlsscasrng.x |
|- ( ph -> X e. R ) |
13 |
6
|
ressid |
|- ( S e. CRing -> ( S |`s B ) = S ) |
14 |
13
|
eqcomd |
|- ( S e. CRing -> S = ( S |`s B ) ) |
15 |
10 14
|
syl |
|- ( ph -> S = ( S |`s B ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( I mPoly S ) = ( I mPoly ( S |`s B ) ) ) |
17 |
5 16
|
eqtrid |
|- ( ph -> P = ( I mPoly ( S |`s B ) ) ) |
18 |
17
|
fveq2d |
|- ( ph -> ( algSc ` P ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) ) |
19 |
8 18
|
eqtrid |
|- ( ph -> C = ( algSc ` ( I mPoly ( S |`s B ) ) ) ) |
20 |
19
|
fveq1d |
|- ( ph -> ( C ` X ) = ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) |
21 |
20
|
fveq2d |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) ) |
22 |
|
eqid |
|- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
23 |
|
eqid |
|- ( I mPoly ( S |`s B ) ) = ( I mPoly ( S |`s B ) ) |
24 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
25 |
|
eqid |
|- ( algSc ` ( I mPoly ( S |`s B ) ) ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) |
26 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
27 |
6
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
28 |
10 26 27
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
29 |
6
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ B ) |
30 |
11 29
|
syl |
|- ( ph -> R C_ B ) |
31 |
30 12
|
sseldd |
|- ( ph -> X e. B ) |
32 |
22 23 24 6 25 9 10 28 31
|
evlssca |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
33 |
21 32
|
eqtrd |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
34 |
2 6
|
evlval |
|- O = ( ( I evalSub S ) ` B ) |
35 |
34
|
a1i |
|- ( ph -> O = ( ( I evalSub S ) ` B ) ) |
36 |
35
|
fveq1d |
|- ( ph -> ( O ` ( C ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) ) |
37 |
1 3 4 6 7 9 10 11 12
|
evlssca |
|- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
38 |
33 36 37
|
3eqtr4rd |
|- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |