Step |
Hyp |
Ref |
Expression |
1 |
|
evlsval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsval.w |
|- W = ( I mPoly U ) |
3 |
|
evlsval.v |
|- V = ( I mVar U ) |
4 |
|
evlsval.u |
|- U = ( S |`s R ) |
5 |
|
evlsval.t |
|- T = ( S ^s ( B ^m I ) ) |
6 |
|
evlsval.b |
|- B = ( Base ` S ) |
7 |
|
evlsval.a |
|- A = ( algSc ` W ) |
8 |
|
evlsval.x |
|- X = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
9 |
|
evlsval.y |
|- Y = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
10 |
|
elex |
|- ( I e. Z -> I e. _V ) |
11 |
|
fveq2 |
|- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
12 |
11
|
adantl |
|- ( ( i = I /\ s = S ) -> ( Base ` s ) = ( Base ` S ) ) |
13 |
12
|
csbeq1d |
|- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = [_ ( Base ` S ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
14 |
|
fvex |
|- ( Base ` S ) e. _V |
15 |
14
|
a1i |
|- ( ( i = I /\ s = S ) -> ( Base ` S ) e. _V ) |
16 |
|
simplr |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> s = S ) |
17 |
16
|
fveq2d |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( SubRing ` s ) = ( SubRing ` S ) ) |
18 |
|
simpll |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> i = I ) |
19 |
|
oveq1 |
|- ( s = S -> ( s |`s r ) = ( S |`s r ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( s |`s r ) = ( S |`s r ) ) |
21 |
18 20
|
oveq12d |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( i mPoly ( s |`s r ) ) = ( I mPoly ( S |`s r ) ) ) |
22 |
21
|
csbeq1d |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
23 |
|
ovexd |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( I mPoly ( S |`s r ) ) e. _V ) |
24 |
|
simprr |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> w = ( I mPoly ( S |`s r ) ) ) |
25 |
|
simplr |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> s = S ) |
26 |
|
simprl |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> b = ( Base ` S ) ) |
27 |
|
simpll |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> i = I ) |
28 |
26 27
|
oveq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( b ^m i ) = ( ( Base ` S ) ^m I ) ) |
29 |
25 28
|
oveq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( s ^s ( b ^m i ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) ) |
30 |
24 29
|
oveq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( w RingHom ( s ^s ( b ^m i ) ) ) = ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
31 |
24
|
fveq2d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( algSc ` w ) = ( algSc ` ( I mPoly ( S |`s r ) ) ) ) |
32 |
31
|
coeq2d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( f o. ( algSc ` w ) ) = ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) ) |
33 |
28
|
xpeq1d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( b ^m i ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
34 |
33
|
mpteq2dv |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( x e. r |-> ( ( b ^m i ) X. { x } ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
35 |
32 34
|
eqeq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) <-> ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) ) |
36 |
25
|
oveq1d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( s |`s r ) = ( S |`s r ) ) |
37 |
27 36
|
oveq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( i mVar ( s |`s r ) ) = ( I mVar ( S |`s r ) ) ) |
38 |
37
|
coeq2d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( f o. ( i mVar ( s |`s r ) ) ) = ( f o. ( I mVar ( S |`s r ) ) ) ) |
39 |
28
|
mpteq1d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( g e. ( b ^m i ) |-> ( g ` x ) ) = ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
40 |
27 39
|
mpteq12dv |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) |
41 |
38 40
|
eqeq12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) <-> ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
42 |
35 41
|
anbi12d |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
43 |
30 42
|
riotaeqbidv |
|- ( ( ( i = I /\ s = S ) /\ ( b = ( Base ` S ) /\ w = ( I mPoly ( S |`s r ) ) ) ) -> ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
44 |
43
|
anassrs |
|- ( ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) /\ w = ( I mPoly ( S |`s r ) ) ) -> ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
45 |
23 44
|
csbied |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( I mPoly ( S |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
46 |
22 45
|
eqtrd |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
47 |
17 46
|
mpteq12dv |
|- ( ( ( i = I /\ s = S ) /\ b = ( Base ` S ) ) -> ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
48 |
15 47
|
csbied |
|- ( ( i = I /\ s = S ) -> [_ ( Base ` S ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
49 |
13 48
|
eqtrd |
|- ( ( i = I /\ s = S ) -> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
50 |
|
df-evls |
|- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
51 |
|
fvex |
|- ( SubRing ` S ) e. _V |
52 |
51
|
mptex |
|- ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) e. _V |
53 |
49 50 52
|
ovmpoa |
|- ( ( I e. _V /\ S e. CRing ) -> ( I evalSub S ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ) |
54 |
53
|
fveq1d |
|- ( ( I e. _V /\ S e. CRing ) -> ( ( I evalSub S ) ` R ) = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
55 |
10 54
|
sylan |
|- ( ( I e. Z /\ S e. CRing ) -> ( ( I evalSub S ) ` R ) = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
56 |
1 55
|
eqtrid |
|- ( ( I e. Z /\ S e. CRing ) -> Q = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
57 |
56
|
3adant3 |
|- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) ) |
58 |
|
oveq2 |
|- ( r = R -> ( S |`s r ) = ( S |`s R ) ) |
59 |
58
|
oveq2d |
|- ( r = R -> ( I mPoly ( S |`s r ) ) = ( I mPoly ( S |`s R ) ) ) |
60 |
59
|
oveq1d |
|- ( r = R -> ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
61 |
59
|
fveq2d |
|- ( r = R -> ( algSc ` ( I mPoly ( S |`s r ) ) ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) ) |
62 |
61
|
coeq2d |
|- ( r = R -> ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) ) |
63 |
|
mpteq1 |
|- ( r = R -> ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
64 |
62 63
|
eqeq12d |
|- ( r = R -> ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) <-> ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) ) |
65 |
58
|
oveq2d |
|- ( r = R -> ( I mVar ( S |`s r ) ) = ( I mVar ( S |`s R ) ) ) |
66 |
65
|
coeq2d |
|- ( r = R -> ( f o. ( I mVar ( S |`s r ) ) ) = ( f o. ( I mVar ( S |`s R ) ) ) ) |
67 |
66
|
eqeq1d |
|- ( r = R -> ( ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) <-> ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
68 |
64 67
|
anbi12d |
|- ( r = R -> ( ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
69 |
60 68
|
riotaeqbidv |
|- ( r = R -> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
70 |
|
eqid |
|- ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) = ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
71 |
|
riotaex |
|- ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) e. _V |
72 |
69 70 71
|
fvmpt |
|- ( R e. ( SubRing ` S ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
73 |
4
|
oveq2i |
|- ( I mPoly U ) = ( I mPoly ( S |`s R ) ) |
74 |
2 73
|
eqtri |
|- W = ( I mPoly ( S |`s R ) ) |
75 |
6
|
oveq1i |
|- ( B ^m I ) = ( ( Base ` S ) ^m I ) |
76 |
75
|
oveq2i |
|- ( S ^s ( B ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
77 |
5 76
|
eqtri |
|- T = ( S ^s ( ( Base ` S ) ^m I ) ) |
78 |
74 77
|
oveq12i |
|- ( W RingHom T ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) |
79 |
78
|
a1i |
|- ( T. -> ( W RingHom T ) = ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
80 |
74
|
fveq2i |
|- ( algSc ` W ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
81 |
7 80
|
eqtri |
|- A = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
82 |
81
|
coeq2i |
|- ( f o. A ) = ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) |
83 |
75
|
xpeq1i |
|- ( ( B ^m I ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { x } ) |
84 |
83
|
mpteq2i |
|- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
85 |
8 84
|
eqtri |
|- X = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
86 |
82 85
|
eqeq12i |
|- ( ( f o. A ) = X <-> ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ) |
87 |
4
|
oveq2i |
|- ( I mVar U ) = ( I mVar ( S |`s R ) ) |
88 |
3 87
|
eqtri |
|- V = ( I mVar ( S |`s R ) ) |
89 |
88
|
coeq2i |
|- ( f o. V ) = ( f o. ( I mVar ( S |`s R ) ) ) |
90 |
|
eqid |
|- ( g ` x ) = ( g ` x ) |
91 |
75 90
|
mpteq12i |
|- ( g e. ( B ^m I ) |-> ( g ` x ) ) = ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) |
92 |
91
|
mpteq2i |
|- ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
93 |
9 92
|
eqtri |
|- Y = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) |
94 |
89 93
|
eqeq12i |
|- ( ( f o. V ) = Y <-> ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) |
95 |
86 94
|
anbi12i |
|- ( ( ( f o. A ) = X /\ ( f o. V ) = Y ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
96 |
95
|
a1i |
|- ( T. -> ( ( ( f o. A ) = X /\ ( f o. V ) = Y ) <-> ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
97 |
79 96
|
riotaeqbidv |
|- ( T. -> ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) |
98 |
97
|
mptru |
|- ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) = ( iota_ f e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s R ) ) ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s R ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) |
99 |
72 98
|
eqtr4di |
|- ( R e. ( SubRing ` S ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |
100 |
99
|
3ad2ant3 |
|- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( r e. ( SubRing ` S ) |-> ( iota_ f e. ( ( I mPoly ( S |`s r ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( f o. ( algSc ` ( I mPoly ( S |`s r ) ) ) ) = ( x e. r |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) /\ ( f o. ( I mVar ( S |`s r ) ) ) = ( x e. I |-> ( g e. ( ( Base ` S ) ^m I ) |-> ( g ` x ) ) ) ) ) ) ` R ) = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |
101 |
57 100
|
eqtrd |
|- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ f e. ( W RingHom T ) ( ( f o. A ) = X /\ ( f o. V ) = Y ) ) ) |