Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvar.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsvar.v |
|- V = ( I mVar U ) |
3 |
|
evlsvar.u |
|- U = ( S |`s R ) |
4 |
|
evlsvar.b |
|- B = ( Base ` S ) |
5 |
|
evlsvar.i |
|- ( ph -> I e. W ) |
6 |
|
evlsvar.s |
|- ( ph -> S e. CRing ) |
7 |
|
evlsvar.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
8 |
|
evlsvar.x |
|- ( ph -> X e. I ) |
9 |
|
eqid |
|- ( I mPoly U ) = ( I mPoly U ) |
10 |
|
eqid |
|- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
11 |
|
eqid |
|- ( algSc ` ( I mPoly U ) ) = ( algSc ` ( I mPoly U ) ) |
12 |
|
eqid |
|- ( x e. R |-> ( ( B ^m I ) X. { x } ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) |
13 |
|
eqid |
|- ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) |
14 |
1 9 2 3 10 4 11 12 13
|
evlsval2 |
|- ( ( I e. W /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Q e. ( ( I mPoly U ) RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. ( algSc ` ( I mPoly U ) ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) ) ) |
15 |
5 6 7 14
|
syl3anc |
|- ( ph -> ( Q e. ( ( I mPoly U ) RingHom ( S ^s ( B ^m I ) ) ) /\ ( ( Q o. ( algSc ` ( I mPoly U ) ) ) = ( x e. R |-> ( ( B ^m I ) X. { x } ) ) /\ ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) ) ) |
16 |
15
|
simprrd |
|- ( ph -> ( Q o. V ) = ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ) |
17 |
16
|
fveq1d |
|- ( ph -> ( ( Q o. V ) ` X ) = ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) ) |
18 |
|
eqid |
|- ( Base ` ( I mPoly U ) ) = ( Base ` ( I mPoly U ) ) |
19 |
3
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
20 |
7 19
|
syl |
|- ( ph -> U e. Ring ) |
21 |
9 2 18 5 20
|
mvrf2 |
|- ( ph -> V : I --> ( Base ` ( I mPoly U ) ) ) |
22 |
21
|
ffnd |
|- ( ph -> V Fn I ) |
23 |
|
fvco2 |
|- ( ( V Fn I /\ X e. I ) -> ( ( Q o. V ) ` X ) = ( Q ` ( V ` X ) ) ) |
24 |
22 8 23
|
syl2anc |
|- ( ph -> ( ( Q o. V ) ` X ) = ( Q ` ( V ` X ) ) ) |
25 |
|
fveq2 |
|- ( x = X -> ( g ` x ) = ( g ` X ) ) |
26 |
25
|
mpteq2dv |
|- ( x = X -> ( g e. ( B ^m I ) |-> ( g ` x ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
27 |
|
ovex |
|- ( B ^m I ) e. _V |
28 |
27
|
mptex |
|- ( g e. ( B ^m I ) |-> ( g ` X ) ) e. _V |
29 |
26 13 28
|
fvmpt |
|- ( X e. I -> ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
30 |
8 29
|
syl |
|- ( ph -> ( ( x e. I |-> ( g e. ( B ^m I ) |-> ( g ` x ) ) ) ` X ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
31 |
17 24 30
|
3eqtr3d |
|- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |