Metamath Proof Explorer


Theorem evlsvarpw

Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)

Ref Expression
Hypotheses evlsvarpw.q
|- Q = ( ( I evalSub S ) ` R )
evlsvarpw.w
|- W = ( I mPoly U )
evlsvarpw.g
|- G = ( mulGrp ` W )
evlsvarpw.e
|- .^ = ( .g ` G )
evlsvarpw.x
|- X = ( ( I mVar U ) ` Y )
evlsvarpw.u
|- U = ( S |`s R )
evlsvarpw.p
|- P = ( S ^s ( B ^m I ) )
evlsvarpw.h
|- H = ( mulGrp ` P )
evlsvarpw.b
|- B = ( Base ` S )
evlsvarpw.i
|- ( ph -> I e. V )
evlsvarpw.y
|- ( ph -> Y e. I )
evlsvarpw.s
|- ( ph -> S e. CRing )
evlsvarpw.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsvarpw.n
|- ( ph -> N e. NN0 )
Assertion evlsvarpw
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) )

Proof

Step Hyp Ref Expression
1 evlsvarpw.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsvarpw.w
 |-  W = ( I mPoly U )
3 evlsvarpw.g
 |-  G = ( mulGrp ` W )
4 evlsvarpw.e
 |-  .^ = ( .g ` G )
5 evlsvarpw.x
 |-  X = ( ( I mVar U ) ` Y )
6 evlsvarpw.u
 |-  U = ( S |`s R )
7 evlsvarpw.p
 |-  P = ( S ^s ( B ^m I ) )
8 evlsvarpw.h
 |-  H = ( mulGrp ` P )
9 evlsvarpw.b
 |-  B = ( Base ` S )
10 evlsvarpw.i
 |-  ( ph -> I e. V )
11 evlsvarpw.y
 |-  ( ph -> Y e. I )
12 evlsvarpw.s
 |-  ( ph -> S e. CRing )
13 evlsvarpw.r
 |-  ( ph -> R e. ( SubRing ` S ) )
14 evlsvarpw.n
 |-  ( ph -> N e. NN0 )
15 eqid
 |-  ( Base ` W ) = ( Base ` W )
16 eqid
 |-  ( I mVar U ) = ( I mVar U )
17 6 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
18 13 17 syl
 |-  ( ph -> U e. Ring )
19 2 16 15 10 18 11 mvrcl
 |-  ( ph -> ( ( I mVar U ) ` Y ) e. ( Base ` W ) )
20 5 19 eqeltrid
 |-  ( ph -> X e. ( Base ` W ) )
21 1 2 3 4 6 7 8 9 15 10 12 13 14 20 evlspw
 |-  ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) )