Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsvarpw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
evlsvarpw.w | |- W = ( I mPoly U ) |
||
evlsvarpw.g | |- G = ( mulGrp ` W ) |
||
evlsvarpw.e | |- .^ = ( .g ` G ) |
||
evlsvarpw.x | |- X = ( ( I mVar U ) ` Y ) |
||
evlsvarpw.u | |- U = ( S |`s R ) |
||
evlsvarpw.p | |- P = ( S ^s ( B ^m I ) ) |
||
evlsvarpw.h | |- H = ( mulGrp ` P ) |
||
evlsvarpw.b | |- B = ( Base ` S ) |
||
evlsvarpw.i | |- ( ph -> I e. V ) |
||
evlsvarpw.y | |- ( ph -> Y e. I ) |
||
evlsvarpw.s | |- ( ph -> S e. CRing ) |
||
evlsvarpw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
evlsvarpw.n | |- ( ph -> N e. NN0 ) |
||
Assertion | evlsvarpw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvarpw.q | |- Q = ( ( I evalSub S ) ` R ) |
|
2 | evlsvarpw.w | |- W = ( I mPoly U ) |
|
3 | evlsvarpw.g | |- G = ( mulGrp ` W ) |
|
4 | evlsvarpw.e | |- .^ = ( .g ` G ) |
|
5 | evlsvarpw.x | |- X = ( ( I mVar U ) ` Y ) |
|
6 | evlsvarpw.u | |- U = ( S |`s R ) |
|
7 | evlsvarpw.p | |- P = ( S ^s ( B ^m I ) ) |
|
8 | evlsvarpw.h | |- H = ( mulGrp ` P ) |
|
9 | evlsvarpw.b | |- B = ( Base ` S ) |
|
10 | evlsvarpw.i | |- ( ph -> I e. V ) |
|
11 | evlsvarpw.y | |- ( ph -> Y e. I ) |
|
12 | evlsvarpw.s | |- ( ph -> S e. CRing ) |
|
13 | evlsvarpw.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
14 | evlsvarpw.n | |- ( ph -> N e. NN0 ) |
|
15 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
16 | eqid | |- ( I mVar U ) = ( I mVar U ) |
|
17 | 6 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
18 | 13 17 | syl | |- ( ph -> U e. Ring ) |
19 | 2 16 15 10 18 11 | mvrcl | |- ( ph -> ( ( I mVar U ) ` Y ) e. ( Base ` W ) ) |
20 | 5 19 | eqeltrid | |- ( ph -> X e. ( Base ` W ) ) |
21 | 1 2 3 4 6 7 8 9 15 10 12 13 14 20 | evlspw | |- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` H ) ( Q ` X ) ) ) |