| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evlsvvvallem2.d | 
							 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
						
							| 2 | 
							
								
							 | 
							evlsvvvallem2.p | 
							 |-  P = ( I mPoly U )  | 
						
						
							| 3 | 
							
								
							 | 
							evlsvvvallem2.u | 
							 |-  U = ( S |`s R )  | 
						
						
							| 4 | 
							
								
							 | 
							evlsvvvallem2.b | 
							 |-  B = ( Base ` P )  | 
						
						
							| 5 | 
							
								
							 | 
							evlsvvvallem2.k | 
							 |-  K = ( Base ` S )  | 
						
						
							| 6 | 
							
								
							 | 
							evlsvvvallem2.m | 
							 |-  M = ( mulGrp ` S )  | 
						
						
							| 7 | 
							
								
							 | 
							evlsvvvallem2.w | 
							 |-  .^ = ( .g ` M )  | 
						
						
							| 8 | 
							
								
							 | 
							evlsvvvallem2.x | 
							 |-  .x. = ( .r ` S )  | 
						
						
							| 9 | 
							
								
							 | 
							evlsvvvallem2.i | 
							 |-  ( ph -> I e. V )  | 
						
						
							| 10 | 
							
								
							 | 
							evlsvvvallem2.s | 
							 |-  ( ph -> S e. CRing )  | 
						
						
							| 11 | 
							
								
							 | 
							evlsvvvallem2.r | 
							 |-  ( ph -> R e. ( SubRing ` S ) )  | 
						
						
							| 12 | 
							
								
							 | 
							evlsvvvallem2.f | 
							 |-  ( ph -> F e. B )  | 
						
						
							| 13 | 
							
								
							 | 
							evlsvvvallem2.a | 
							 |-  ( ph -> A e. ( K ^m I ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ovex | 
							 |-  ( NN0 ^m I ) e. _V  | 
						
						
							| 15 | 
							
								1 14
							 | 
							rabex2 | 
							 |-  D e. _V  | 
						
						
							| 16 | 
							
								15
							 | 
							mptex | 
							 |-  ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V )  | 
						
						
							| 18 | 
							
								
							 | 
							fvexd | 
							 |-  ( ph -> ( 0g ` S ) e. _V )  | 
						
						
							| 19 | 
							
								
							 | 
							funmpt | 
							 |-  Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							 |-  ( ph -> Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` U ) = ( 0g ` U )  | 
						
						
							| 22 | 
							
								2 4 21 12
							 | 
							mplelsfi | 
							 |-  ( ph -> F finSupp ( 0g ` U ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` U ) = ( Base ` U )  | 
						
						
							| 24 | 
							
								2 23 4 1 12
							 | 
							mplelf | 
							 |-  ( ph -> F : D --> ( Base ` U ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ssidd | 
							 |-  ( ph -> ( F supp ( 0g ` U ) ) C_ ( F supp ( 0g ` U ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fvexd | 
							 |-  ( ph -> ( 0g ` U ) e. _V )  | 
						
						
							| 27 | 
							
								24 25 12 26
							 | 
							suppssrg | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` U ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` S ) = ( 0g ` S )  | 
						
						
							| 29 | 
							
								3 28
							 | 
							subrg0 | 
							 |-  ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) )  | 
						
						
							| 30 | 
							
								11 29
							 | 
							syl | 
							 |-  ( ph -> ( 0g ` S ) = ( 0g ` U ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqcomd | 
							 |-  ( ph -> ( 0g ` U ) = ( 0g ` S ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) = ( 0g ` S ) )  | 
						
						
							| 33 | 
							
								27 32
							 | 
							eqtrd | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` S ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq1d | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) )  | 
						
						
							| 35 | 
							
								10
							 | 
							crngringd | 
							 |-  ( ph -> S e. Ring )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> S e. Ring )  | 
						
						
							| 37 | 
							
								
							 | 
							eldifi | 
							 |-  ( b e. ( D \ ( F supp ( 0g ` U ) ) ) -> b e. D )  | 
						
						
							| 38 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ b e. D ) -> I e. V )  | 
						
						
							| 39 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ b e. D ) -> S e. CRing )  | 
						
						
							| 40 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ b e. D ) -> A e. ( K ^m I ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ b e. D ) -> b e. D )  | 
						
						
							| 42 | 
							
								1 5 6 7 38 39 40 41
							 | 
							evlsvvvallem | 
							 |-  ( ( ph /\ b e. D ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K )  | 
						
						
							| 43 | 
							
								37 42
							 | 
							sylan2 | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K )  | 
						
						
							| 44 | 
							
								5 8 28 36 43
							 | 
							ringlzd | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) )  | 
						
						
							| 45 | 
							
								34 44
							 | 
							eqtrd | 
							 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) )  | 
						
						
							| 46 | 
							
								15
							 | 
							a1i | 
							 |-  ( ph -> D e. _V )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							suppss2 | 
							 |-  ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) supp ( 0g ` S ) ) C_ ( F supp ( 0g ` U ) ) )  | 
						
						
							| 48 | 
							
								17 18 20 22 47
							 | 
							fsuppsssuppgd | 
							 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) )  |