Step |
Hyp |
Ref |
Expression |
1 |
|
evlval.q |
|- Q = ( I eval R ) |
2 |
|
evlval.b |
|- B = ( Base ` R ) |
3 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i evalSub r ) = ( I evalSub R ) ) |
4 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
5 |
4 2
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
6 |
5
|
adantl |
|- ( ( i = I /\ r = R ) -> ( Base ` r ) = B ) |
7 |
3 6
|
fveq12d |
|- ( ( i = I /\ r = R ) -> ( ( i evalSub r ) ` ( Base ` r ) ) = ( ( I evalSub R ) ` B ) ) |
8 |
|
df-evl |
|- eval = ( i e. _V , r e. _V |-> ( ( i evalSub r ) ` ( Base ` r ) ) ) |
9 |
|
fvex |
|- ( ( I evalSub R ) ` B ) e. _V |
10 |
7 8 9
|
ovmpoa |
|- ( ( I e. _V /\ R e. _V ) -> ( I eval R ) = ( ( I evalSub R ) ` B ) ) |
11 |
8
|
mpondm0 |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I eval R ) = (/) ) |
12 |
|
0fv |
|- ( (/) ` B ) = (/) |
13 |
11 12
|
eqtr4di |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I eval R ) = ( (/) ` B ) ) |
14 |
|
reldmevls |
|- Rel dom evalSub |
15 |
14
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I evalSub R ) = (/) ) |
16 |
15
|
fveq1d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( ( I evalSub R ) ` B ) = ( (/) ` B ) ) |
17 |
13 16
|
eqtr4d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I eval R ) = ( ( I evalSub R ) ` B ) ) |
18 |
10 17
|
pm2.61i |
|- ( I eval R ) = ( ( I evalSub R ) ` B ) |
19 |
1 18
|
eqtri |
|- Q = ( ( I evalSub R ) ` B ) |