Step |
Hyp |
Ref |
Expression |
1 |
|
evlvar.q |
|- Q = ( I eval S ) |
2 |
|
evlvar.v |
|- V = ( I mVar S ) |
3 |
|
evlvar.b |
|- B = ( Base ` S ) |
4 |
|
evlvar.i |
|- ( ph -> I e. W ) |
5 |
|
evlvar.s |
|- ( ph -> S e. CRing ) |
6 |
|
evlvar.x |
|- ( ph -> X e. I ) |
7 |
|
eqid |
|- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
8 |
|
eqid |
|- ( I mVar ( S |`s B ) ) = ( I mVar ( S |`s B ) ) |
9 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
10 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
11 |
3
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
12 |
5 10 11
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
13 |
7 1 8 9 3 4 5 12 6
|
evlsvarsrng |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( Q ` ( ( I mVar ( S |`s B ) ) ` X ) ) ) |
14 |
7 8 9 3 4 5 12 6
|
evlsvar |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
15 |
2 4 12 9
|
subrgmvr |
|- ( ph -> V = ( I mVar ( S |`s B ) ) ) |
16 |
15
|
fveq1d |
|- ( ph -> ( V ` X ) = ( ( I mVar ( S |`s B ) ) ` X ) ) |
17 |
16
|
eqcomd |
|- ( ph -> ( ( I mVar ( S |`s B ) ) ` X ) = ( V ` X ) ) |
18 |
17
|
fveq2d |
|- ( ph -> ( Q ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( Q ` ( V ` X ) ) ) |
19 |
13 14 18
|
3eqtr3rd |
|- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |