Metamath Proof Explorer


Theorem evlvvvallem

Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses evlvvvallem.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlvvvallem.p
|- P = ( I mPoly R )
evlvvvallem.b
|- B = ( Base ` P )
evlvvvallem.k
|- K = ( Base ` R )
evlvvvallem.m
|- M = ( mulGrp ` R )
evlvvvallem.w
|- .^ = ( .g ` M )
evlvvvallem.x
|- .x. = ( .r ` R )
evlvvvallem.i
|- ( ph -> I e. V )
evlvvvallem.r
|- ( ph -> R e. CRing )
evlvvvallem.f
|- ( ph -> F e. B )
evlvvvallem.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlvvvallem
|- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` R ) )

Proof

Step Hyp Ref Expression
1 evlvvvallem.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
2 evlvvvallem.p
 |-  P = ( I mPoly R )
3 evlvvvallem.b
 |-  B = ( Base ` P )
4 evlvvvallem.k
 |-  K = ( Base ` R )
5 evlvvvallem.m
 |-  M = ( mulGrp ` R )
6 evlvvvallem.w
 |-  .^ = ( .g ` M )
7 evlvvvallem.x
 |-  .x. = ( .r ` R )
8 evlvvvallem.i
 |-  ( ph -> I e. V )
9 evlvvvallem.r
 |-  ( ph -> R e. CRing )
10 evlvvvallem.f
 |-  ( ph -> F e. B )
11 evlvvvallem.a
 |-  ( ph -> A e. ( K ^m I ) )
12 eqid
 |-  ( I mPoly ( R |`s K ) ) = ( I mPoly ( R |`s K ) )
13 eqid
 |-  ( R |`s K ) = ( R |`s K )
14 eqid
 |-  ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` ( I mPoly ( R |`s K ) ) )
15 9 crngringd
 |-  ( ph -> R e. Ring )
16 4 subrgid
 |-  ( R e. Ring -> K e. ( SubRing ` R ) )
17 15 16 syl
 |-  ( ph -> K e. ( SubRing ` R ) )
18 4 ressid
 |-  ( R e. CRing -> ( R |`s K ) = R )
19 9 18 syl
 |-  ( ph -> ( R |`s K ) = R )
20 19 oveq2d
 |-  ( ph -> ( I mPoly ( R |`s K ) ) = ( I mPoly R ) )
21 20 2 eqtr4di
 |-  ( ph -> ( I mPoly ( R |`s K ) ) = P )
22 21 fveq2d
 |-  ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = ( Base ` P ) )
23 22 3 eqtr4di
 |-  ( ph -> ( Base ` ( I mPoly ( R |`s K ) ) ) = B )
24 10 23 eleqtrrd
 |-  ( ph -> F e. ( Base ` ( I mPoly ( R |`s K ) ) ) )
25 1 12 13 14 4 5 6 7 8 9 17 24 11 evlsvvvallem2
 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` R ) )