| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmodpmf1o.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | evpmodpmf1o.p |  |-  P = ( Base ` S ) | 
						
							| 3 |  | simpll |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> D e. Fin ) | 
						
							| 4 | 1 | symggrp |  |-  ( D e. Fin -> S e. Grp ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> S e. Grp ) | 
						
							| 6 |  | eldifi |  |-  ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) | 
						
							| 7 | 6 | ad2antlr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> F e. P ) | 
						
							| 8 | 1 2 | evpmss |  |-  ( pmEven ` D ) C_ P | 
						
							| 9 | 8 | sseli |  |-  ( f e. ( pmEven ` D ) -> f e. P ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> f e. P ) | 
						
							| 11 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 12 | 2 11 | grpcl |  |-  ( ( S e. Grp /\ F e. P /\ f e. P ) -> ( F ( +g ` S ) f ) e. P ) | 
						
							| 13 | 5 7 10 12 | syl3anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. P ) | 
						
							| 14 |  | eqid |  |-  ( pmSgn ` D ) = ( pmSgn ` D ) | 
						
							| 15 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 16 | 1 14 15 | psgnghm2 |  |-  ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 18 |  | prex |  |-  { 1 , -u 1 } e. _V | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 20 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 21 | 19 20 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 22 | 15 21 | ressplusg |  |-  ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 23 | 18 22 | ax-mp |  |-  x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 24 | 2 11 23 | ghmlin |  |-  ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ f e. P ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) | 
						
							| 25 | 17 7 10 24 | syl3anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) | 
						
							| 26 | 1 2 14 | psgnodpm |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) | 
						
							| 28 | 1 2 14 | psgnevpm |  |-  ( ( D e. Fin /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) | 
						
							| 29 | 28 | adantlr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) | 
						
							| 30 | 27 29 | oveq12d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = ( -u 1 x. 1 ) ) | 
						
							| 31 |  | ax-1cn |  |-  1 e. CC | 
						
							| 32 | 31 | mulm1i |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 33 | 30 32 | eqtrdi |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = -u 1 ) | 
						
							| 34 | 25 33 | eqtrd |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) | 
						
							| 35 | 1 2 14 | psgnodpmr |  |-  ( ( D e. Fin /\ ( F ( +g ` S ) f ) e. P /\ ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) | 
						
							| 36 | 3 13 34 35 | syl3anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) | 
						
							| 37 | 36 | fmpttd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) --> ( P \ ( pmEven ` D ) ) ) | 
						
							| 38 | 4 | ad2antrr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> S e. Grp ) | 
						
							| 39 |  | eqid |  |-  ( invg ` S ) = ( invg ` S ) | 
						
							| 40 | 2 39 | grpinvcl |  |-  ( ( S e. Grp /\ F e. P ) -> ( ( invg ` S ) ` F ) e. P ) | 
						
							| 41 | 4 6 40 | syl2an |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) | 
						
							| 43 |  | eldifi |  |-  ( g e. ( P \ ( pmEven ` D ) ) -> g e. P ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> g e. P ) | 
						
							| 45 | 2 11 | grpcl |  |-  ( ( S e. Grp /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) | 
						
							| 46 | 38 42 44 45 | syl3anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) | 
						
							| 47 | 16 | ad2antrr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 48 | 2 11 23 | ghmlin |  |-  ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) | 
						
							| 49 | 47 42 44 48 | syl3anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) | 
						
							| 50 | 1 2 39 | symginv |  |-  ( F e. P -> ( ( invg ` S ) ` F ) = `' F ) | 
						
							| 51 | 6 50 | syl |  |-  ( F e. ( P \ ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) = `' F ) | 
						
							| 52 | 51 | ad2antlr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) = `' F ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) = ( ( pmSgn ` D ) ` `' F ) ) | 
						
							| 54 | 1 2 14 | psgnodpm |  |-  ( ( D e. Fin /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) | 
						
							| 55 | 54 | adantlr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) | 
						
							| 56 | 53 55 | oveq12d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) = ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) ) | 
						
							| 57 |  | simpll |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> D e. Fin ) | 
						
							| 58 | 6 | ad2antlr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) | 
						
							| 59 | 1 14 2 | psgninv |  |-  ( ( D e. Fin /\ F e. P ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) | 
						
							| 60 | 57 58 59 | syl2anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) | 
						
							| 61 | 26 | adantr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) | 
						
							| 62 | 60 61 | eqtrd |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = -u 1 ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = ( -u 1 x. -u 1 ) ) | 
						
							| 64 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 65 | 63 64 | eqtrdi |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = 1 ) | 
						
							| 66 | 49 56 65 | 3eqtrd |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) | 
						
							| 67 | 1 2 14 | psgnevpmb |  |-  ( D e. Fin -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) | 
						
							| 69 | 46 66 68 | mpbir2and |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) ) | 
						
							| 70 | 69 | fmpttd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) : ( P \ ( pmEven ` D ) ) --> ( pmEven ` D ) ) | 
						
							| 71 |  | eqidd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) = ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) | 
						
							| 72 |  | eqidd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) | 
						
							| 73 |  | oveq2 |  |-  ( g = ( F ( +g ` S ) f ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) | 
						
							| 74 | 36 71 72 73 | fmptco |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) ) | 
						
							| 75 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 76 | 2 11 75 39 | grplinv |  |-  ( ( S e. Grp /\ F e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) | 
						
							| 77 | 5 7 76 | syl2anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) | 
						
							| 78 | 77 | oveq1d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( 0g ` S ) ( +g ` S ) f ) ) | 
						
							| 79 | 41 | adantr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) e. P ) | 
						
							| 80 | 2 11 | grpass |  |-  ( ( S e. Grp /\ ( ( ( invg ` S ) ` F ) e. P /\ F e. P /\ f e. P ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) | 
						
							| 81 | 5 79 7 10 80 | syl13anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) | 
						
							| 82 | 2 11 75 | grplid |  |-  ( ( S e. Grp /\ f e. P ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) | 
						
							| 83 | 5 10 82 | syl2anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) | 
						
							| 84 | 78 81 83 | 3eqtr3d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) = f ) | 
						
							| 85 | 84 | mpteq2dva |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) | 
						
							| 86 | 74 85 | eqtrd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) | 
						
							| 87 |  | mptresid |  |-  ( _I |` ( pmEven ` D ) ) = ( f e. ( pmEven ` D ) |-> f ) | 
						
							| 88 | 86 87 | eqtr4di |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( _I |` ( pmEven ` D ) ) ) | 
						
							| 89 |  | oveq2 |  |-  ( f = ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) -> ( F ( +g ` S ) f ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) | 
						
							| 90 | 69 72 71 89 | fmptco |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) ) | 
						
							| 91 | 2 11 75 39 | grprinv |  |-  ( ( S e. Grp /\ F e. P ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) | 
						
							| 92 | 4 6 91 | syl2an |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) | 
						
							| 95 | 2 11 | grpass |  |-  ( ( S e. Grp /\ ( F e. P /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) | 
						
							| 96 | 38 58 42 44 95 | syl13anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) | 
						
							| 97 | 2 11 75 | grplid |  |-  ( ( S e. Grp /\ g e. P ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) | 
						
							| 98 | 38 44 97 | syl2anc |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) | 
						
							| 99 | 94 96 98 | 3eqtr3d |  |-  ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = g ) | 
						
							| 100 | 99 | mpteq2dva |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) | 
						
							| 101 | 90 100 | eqtrd |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) | 
						
							| 102 |  | mptresid |  |-  ( _I |` ( P \ ( pmEven ` D ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) | 
						
							| 103 | 101 102 | eqtr4di |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( _I |` ( P \ ( pmEven ` D ) ) ) ) | 
						
							| 104 | 37 70 88 103 | fcof1od |  |-  ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) -1-1-onto-> ( P \ ( pmEven ` D ) ) ) |