| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmss.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | evpmss.p |  |-  P = ( Base ` S ) | 
						
							| 3 |  | fveq2 |  |-  ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) | 
						
							| 4 | 3 | cnveqd |  |-  ( d = D -> `' ( pmSgn ` d ) = `' ( pmSgn ` D ) ) | 
						
							| 5 | 4 | imaeq1d |  |-  ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' ( pmSgn ` D ) " { 1 } ) ) | 
						
							| 6 |  | df-evpm |  |-  pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) | 
						
							| 7 |  | fvex |  |-  ( pmSgn ` D ) e. _V | 
						
							| 8 | 7 | cnvex |  |-  `' ( pmSgn ` D ) e. _V | 
						
							| 9 | 8 | imaex |  |-  ( `' ( pmSgn ` D ) " { 1 } ) e. _V | 
						
							| 10 | 5 6 9 | fvmpt |  |-  ( D e. _V -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) | 
						
							| 11 |  | cnvimass |  |-  ( `' ( pmSgn ` D ) " { 1 } ) C_ dom ( pmSgn ` D ) | 
						
							| 12 |  | eqid |  |-  ( pmSgn ` D ) = ( pmSgn ` D ) | 
						
							| 13 |  | eqid |  |-  ( S |`s dom ( pmSgn ` D ) ) = ( S |`s dom ( pmSgn ` D ) ) | 
						
							| 14 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 15 | 1 12 13 14 | psgnghm |  |-  ( D e. _V -> ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 18 | 16 17 | ghmf |  |-  ( ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 19 |  | fdm |  |-  ( ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) | 
						
							| 20 | 15 18 19 | 3syl |  |-  ( D e. _V -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) | 
						
							| 21 | 13 2 | ressbasss |  |-  ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) C_ P | 
						
							| 22 | 20 21 | eqsstrdi |  |-  ( D e. _V -> dom ( pmSgn ` D ) C_ P ) | 
						
							| 23 | 11 22 | sstrid |  |-  ( D e. _V -> ( `' ( pmSgn ` D ) " { 1 } ) C_ P ) | 
						
							| 24 | 10 23 | eqsstrd |  |-  ( D e. _V -> ( pmEven ` D ) C_ P ) | 
						
							| 25 |  | fvprc |  |-  ( -. D e. _V -> ( pmEven ` D ) = (/) ) | 
						
							| 26 |  | 0ss |  |-  (/) C_ P | 
						
							| 27 | 25 26 | eqsstrdi |  |-  ( -. D e. _V -> ( pmEven ` D ) C_ P ) | 
						
							| 28 | 24 27 | pm2.61i |  |-  ( pmEven ` D ) C_ P |