Step |
Hyp |
Ref |
Expression |
1 |
|
evpmss.s |
|- S = ( SymGrp ` D ) |
2 |
|
evpmss.p |
|- P = ( Base ` S ) |
3 |
|
fveq2 |
|- ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) |
4 |
3
|
cnveqd |
|- ( d = D -> `' ( pmSgn ` d ) = `' ( pmSgn ` D ) ) |
5 |
4
|
imaeq1d |
|- ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
6 |
|
df-evpm |
|- pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) |
7 |
|
fvex |
|- ( pmSgn ` D ) e. _V |
8 |
7
|
cnvex |
|- `' ( pmSgn ` D ) e. _V |
9 |
8
|
imaex |
|- ( `' ( pmSgn ` D ) " { 1 } ) e. _V |
10 |
5 6 9
|
fvmpt |
|- ( D e. _V -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
11 |
|
cnvimass |
|- ( `' ( pmSgn ` D ) " { 1 } ) C_ dom ( pmSgn ` D ) |
12 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
13 |
|
eqid |
|- ( S |`s dom ( pmSgn ` D ) ) = ( S |`s dom ( pmSgn ` D ) ) |
14 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
15 |
1 12 13 14
|
psgnghm |
|- ( D e. _V -> ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
16 |
|
eqid |
|- ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) |
17 |
|
eqid |
|- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
18 |
16 17
|
ghmf |
|- ( ( pmSgn ` D ) e. ( ( S |`s dom ( pmSgn ` D ) ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
19 |
|
fdm |
|- ( ( pmSgn ` D ) : ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) |
20 |
15 18 19
|
3syl |
|- ( D e. _V -> dom ( pmSgn ` D ) = ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) ) |
21 |
13 2
|
ressbasss |
|- ( Base ` ( S |`s dom ( pmSgn ` D ) ) ) C_ P |
22 |
20 21
|
eqsstrdi |
|- ( D e. _V -> dom ( pmSgn ` D ) C_ P ) |
23 |
11 22
|
sstrid |
|- ( D e. _V -> ( `' ( pmSgn ` D ) " { 1 } ) C_ P ) |
24 |
10 23
|
eqsstrd |
|- ( D e. _V -> ( pmEven ` D ) C_ P ) |
25 |
|
fvprc |
|- ( -. D e. _V -> ( pmEven ` D ) = (/) ) |
26 |
|
0ss |
|- (/) C_ P |
27 |
25 26
|
eqsstrdi |
|- ( -. D e. _V -> ( pmEven ` D ) C_ P ) |
28 |
24 27
|
pm2.61i |
|- ( pmEven ` D ) C_ P |