| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bndth.1 |  |-  X = U. J | 
						
							| 2 |  | bndth.2 |  |-  K = ( topGen ` ran (,) ) | 
						
							| 3 |  | bndth.3 |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | bndth.4 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 5 |  | evth.5 |  |-  ( ph -> X =/= (/) ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Comp ) | 
						
							| 7 |  | cmptop |  |-  ( J e. Comp -> J e. Top ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Top ) | 
						
							| 9 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 11 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 12 | 11 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 13 | 12 | a1i |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 14 |  | 1cnd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> 1 e. CC ) | 
						
							| 15 | 10 13 14 | cnmptc |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> 1 ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 16 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 17 | 2 | unieqi |  |-  U. K = U. ( topGen ` ran (,) ) | 
						
							| 18 | 16 17 | eqtr4i |  |-  RR = U. K | 
						
							| 19 | 1 18 | cnf |  |-  ( F e. ( J Cn K ) -> F : X --> RR ) | 
						
							| 20 | 4 19 | syl |  |-  ( ph -> F : X --> RR ) | 
						
							| 21 | 20 | frnd |  |-  ( ph -> ran F C_ RR ) | 
						
							| 22 | 20 | fdmd |  |-  ( ph -> dom F = X ) | 
						
							| 23 | 22 5 | eqnetrd |  |-  ( ph -> dom F =/= (/) ) | 
						
							| 24 |  | dm0rn0 |  |-  ( dom F = (/) <-> ran F = (/) ) | 
						
							| 25 | 24 | necon3bii |  |-  ( dom F =/= (/) <-> ran F =/= (/) ) | 
						
							| 26 | 23 25 | sylib |  |-  ( ph -> ran F =/= (/) ) | 
						
							| 27 | 1 2 3 4 | bndth |  |-  ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) | 
						
							| 28 | 20 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 29 |  | breq1 |  |-  ( z = ( F ` y ) -> ( z <_ x <-> ( F ` y ) <_ x ) ) | 
						
							| 30 | 29 | ralrn |  |-  ( F Fn X -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 31 | 28 30 | syl |  |-  ( ph -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 32 | 31 | rexbidv |  |-  ( ph -> ( E. x e. RR A. z e. ran F z <_ x <-> E. x e. RR A. y e. X ( F ` y ) <_ x ) ) | 
						
							| 33 | 27 32 | mpbird |  |-  ( ph -> E. x e. RR A. z e. ran F z <_ x ) | 
						
							| 34 | 21 26 33 | 3jca |  |-  ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) | 
						
							| 35 |  | suprcl |  |-  ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) -> sup ( ran F , RR , < ) e. RR ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> sup ( ran F , RR , < ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ph -> sup ( ran F , RR , < ) e. CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> sup ( ran F , RR , < ) e. CC ) | 
						
							| 39 | 10 13 38 | cnmptc |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> sup ( ran F , RR , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 40 | 20 | feqmptd |  |-  ( ph -> F = ( z e. X |-> ( F ` z ) ) ) | 
						
							| 41 | 11 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 42 |  | cnrest2r |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 43 | 41 42 | ax-mp |  |-  ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) | 
						
							| 44 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 45 | 2 44 | eqtri |  |-  K = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 46 | 45 | oveq2i |  |-  ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 47 | 4 46 | eleqtrdi |  |-  ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) | 
						
							| 48 | 43 47 | sselid |  |-  ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 49 | 40 48 | eqeltrrd |  |-  ( ph -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 51 | 11 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 52 | 51 | a1i |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 53 | 10 39 50 52 | cnmpt12f |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 54 | 36 | ad2antrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. RR ) | 
						
							| 55 |  | ffvelcdm |  |-  ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) | 
						
							| 56 | 55 | adantll |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) | 
						
							| 57 |  | eldifsn |  |-  ( ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 58 | 56 57 | sylib |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 59 | 58 | simpld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. RR ) | 
						
							| 60 | 54 59 | resubcld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. RR ) | 
						
							| 61 | 60 | recnd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC ) | 
						
							| 62 | 54 | recnd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. CC ) | 
						
							| 63 | 59 | recnd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. CC ) | 
						
							| 64 | 58 | simprd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) =/= sup ( ran F , RR , < ) ) | 
						
							| 65 | 64 | necomd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) =/= ( F ` z ) ) | 
						
							| 66 | 62 63 65 | subne0d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) | 
						
							| 67 |  | eldifsn |  |-  ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) <-> ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC /\ ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) ) | 
						
							| 68 | 61 66 67 | sylanbrc |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) ) | 
						
							| 69 | 68 | fmpttd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) : X --> ( CC \ { 0 } ) ) | 
						
							| 70 | 69 | frnd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) ) | 
						
							| 71 |  | difssd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( CC \ { 0 } ) C_ CC ) | 
						
							| 72 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) | 
						
							| 73 | 13 70 71 72 | syl3anc |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) | 
						
							| 74 | 53 73 | mpbid |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) | 
						
							| 75 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) | 
						
							| 76 | 11 75 | divcn |  |-  / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 77 | 76 | a1i |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 78 | 10 15 74 77 | cnmpt12f |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 79 | 60 66 | rereccld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. RR ) | 
						
							| 80 | 79 | fmpttd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) : X --> RR ) | 
						
							| 81 | 80 | frnd |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR ) | 
						
							| 82 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 83 | 82 | a1i |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> RR C_ CC ) | 
						
							| 84 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR /\ RR C_ CC ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 85 | 13 81 83 84 | syl3anc |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 86 | 78 85 | mpbid |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) | 
						
							| 87 | 86 46 | eleqtrrdi |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn K ) ) | 
						
							| 88 | 1 2 6 87 | bndth |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) | 
						
							| 89 | 36 | ad2antrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> sup ( ran F , RR , < ) e. RR ) | 
						
							| 90 |  | simpr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> x e. RR ) | 
						
							| 91 |  | 1re |  |-  1 e. RR | 
						
							| 92 |  | ifcl |  |-  ( ( x e. RR /\ 1 e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) | 
						
							| 93 | 90 91 92 | sylancl |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) | 
						
							| 94 |  | 0red |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 e. RR ) | 
						
							| 95 | 91 | a1i |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 e. RR ) | 
						
							| 96 |  | 0lt1 |  |-  0 < 1 | 
						
							| 97 | 96 | a1i |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < 1 ) | 
						
							| 98 |  | max1 |  |-  ( ( 1 e. RR /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) | 
						
							| 99 | 91 90 98 | sylancr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) | 
						
							| 100 | 94 95 93 97 99 | ltletrd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < if ( 1 <_ x , x , 1 ) ) | 
						
							| 101 | 100 | gt0ne0d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) | 
						
							| 102 | 93 101 | rereccld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) | 
						
							| 103 | 93 100 | recgt0d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 104 | 102 103 | elrpd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR+ ) | 
						
							| 105 | 89 104 | ltsubrpd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) ) | 
						
							| 106 | 89 102 | resubcld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) | 
						
							| 107 | 106 89 | ltnled |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) <-> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 108 | 105 107 | mpbid |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) | 
						
							| 109 |  | simprl |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x e. RR ) | 
						
							| 110 |  | max2 |  |-  ( ( 1 e. RR /\ x e. RR ) -> x <_ if ( 1 <_ x , x , 1 ) ) | 
						
							| 111 | 91 109 110 | sylancr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x <_ if ( 1 <_ x , x , 1 ) ) | 
						
							| 112 | 36 | ad2antrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) e. RR ) | 
						
							| 113 |  | ffvelcdm |  |-  ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ y e. X ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) | 
						
							| 114 | 113 | ad2ant2l |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) | 
						
							| 115 |  | eldifsn |  |-  ( ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 116 | 114 115 | sylib |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 117 | 116 | simpld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. RR ) | 
						
							| 118 | 112 117 | resubcld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR ) | 
						
							| 119 |  | fnfvelrn |  |-  ( ( F Fn X /\ y e. X ) -> ( F ` y ) e. ran F ) | 
						
							| 120 | 28 119 | sylan |  |-  ( ( ph /\ y e. X ) -> ( F ` y ) e. ran F ) | 
						
							| 121 |  | suprub |  |-  ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( F ` y ) e. ran F ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) | 
						
							| 122 | 34 120 121 | syl2an2r |  |-  ( ( ph /\ y e. X ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) | 
						
							| 123 | 122 | ad2ant2rl |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) | 
						
							| 124 | 116 | simprd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) =/= sup ( ran F , RR , < ) ) | 
						
							| 125 | 124 | necomd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) =/= ( F ` y ) ) | 
						
							| 126 | 117 112 123 125 | leneltd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) < sup ( ran F , RR , < ) ) | 
						
							| 127 | 117 112 | posdifd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) < sup ( ran F , RR , < ) <-> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) | 
						
							| 128 | 126 127 | mpbid |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) | 
						
							| 129 | 128 | gt0ne0d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) =/= 0 ) | 
						
							| 130 | 118 129 | rereccld |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR ) | 
						
							| 131 | 109 91 92 | sylancl |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. RR ) | 
						
							| 132 |  | letr |  |-  ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR /\ x e. RR /\ if ( 1 <_ x , x , 1 ) e. RR ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 133 | 130 109 131 132 | syl3anc |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 134 | 111 133 | mpan2d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 135 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 136 | 135 | oveq2d |  |-  ( z = y -> ( sup ( ran F , RR , < ) - ( F ` z ) ) = ( sup ( ran F , RR , < ) - ( F ` y ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( z = y -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) | 
						
							| 138 |  | eqid |  |-  ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) = ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) | 
						
							| 139 |  | ovex |  |-  ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. _V | 
						
							| 140 | 137 138 139 | fvmpt |  |-  ( y e. X -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) | 
						
							| 141 | 140 | breq1d |  |-  ( y e. X -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) | 
						
							| 142 | 141 | ad2antll |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) | 
						
							| 143 | 102 | adantrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) | 
						
							| 144 | 100 | adantrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < if ( 1 <_ x , x , 1 ) ) | 
						
							| 145 | 131 144 | recgt0d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 146 |  | lerec |  |-  ( ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) /\ ( ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR /\ 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 147 | 143 145 118 128 146 | syl22anc |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 148 |  | lesub |  |-  ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ sup ( ran F , RR , < ) e. RR /\ ( F ` y ) e. RR ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 149 | 143 112 117 148 | syl3anc |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 150 | 131 | recnd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. CC ) | 
						
							| 151 | 101 | adantrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) | 
						
							| 152 | 150 151 | recrecd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) = if ( 1 <_ x , x , 1 ) ) | 
						
							| 153 | 152 | breq2d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 154 | 147 149 153 | 3bitr3d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) | 
						
							| 155 | 134 142 154 | 3imtr4d |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 156 | 155 | anassrs |  |-  ( ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) /\ y e. X ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 157 | 156 | ralimdva |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 158 | 34 | ad2antrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) | 
						
							| 159 |  | suprleub |  |-  ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 160 | 158 106 159 | syl2anc |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 161 | 28 | ad2antrr |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> F Fn X ) | 
						
							| 162 |  | breq1 |  |-  ( z = ( F ` y ) -> ( z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 163 | 162 | ralrn |  |-  ( F Fn X -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 164 | 161 163 | syl |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 165 | 160 164 | bitrd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 166 | 157 165 | sylibrd |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) | 
						
							| 167 | 108 166 | mtod |  |-  ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) | 
						
							| 168 | 167 | nrexdv |  |-  ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> -. E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) | 
						
							| 169 | 88 168 | pm2.65da |  |-  ( ph -> -. F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) | 
						
							| 170 | 122 | ralrimiva |  |-  ( ph -> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) | 
						
							| 171 |  | breq2 |  |-  ( ( F ` x ) = sup ( ran F , RR , < ) -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` y ) <_ sup ( ran F , RR , < ) ) ) | 
						
							| 172 | 171 | ralbidv |  |-  ( ( F ` x ) = sup ( ran F , RR , < ) -> ( A. y e. X ( F ` y ) <_ ( F ` x ) <-> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) ) | 
						
							| 173 | 170 172 | syl5ibrcom |  |-  ( ph -> ( ( F ` x ) = sup ( ran F , RR , < ) -> A. y e. X ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 174 | 173 | necon3bd |  |-  ( ph -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 176 | 20 | ffvelcdmda |  |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) | 
						
							| 177 |  | eldifsn |  |-  ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 178 | 177 | baib |  |-  ( ( F ` x ) e. RR -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 179 | 176 178 | syl |  |-  ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) | 
						
							| 180 | 175 179 | sylibrd |  |-  ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 181 | 180 | ralimdva |  |-  ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 182 |  | ffnfv |  |-  ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 183 | 182 | baib |  |-  ( F Fn X -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 184 | 28 183 | syl |  |-  ( ph -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 185 | 181 184 | sylibrd |  |-  ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) ) | 
						
							| 186 | 169 185 | mtod |  |-  ( ph -> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) | 
						
							| 187 |  | dfrex2 |  |-  ( E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) <-> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) | 
						
							| 188 | 186 187 | sylibr |  |-  ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |