| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bndth.1 |  |-  X = U. J | 
						
							| 2 |  | bndth.2 |  |-  K = ( topGen ` ran (,) ) | 
						
							| 3 |  | bndth.3 |  |-  ( ph -> J e. Comp ) | 
						
							| 4 |  | bndth.4 |  |-  ( ph -> F e. ( J Cn K ) ) | 
						
							| 5 |  | evth.5 |  |-  ( ph -> X =/= (/) ) | 
						
							| 6 |  | cmptop |  |-  ( J e. Comp -> J e. Top ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 8 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 10 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 11 | 2 | unieqi |  |-  U. K = U. ( topGen ` ran (,) ) | 
						
							| 12 | 10 11 | eqtr4i |  |-  RR = U. K | 
						
							| 13 | 1 12 | cnf |  |-  ( F e. ( J Cn K ) -> F : X --> RR ) | 
						
							| 14 | 4 13 | syl |  |-  ( ph -> F : X --> RR ) | 
						
							| 15 | 14 | feqmptd |  |-  ( ph -> F = ( z e. X |-> ( F ` z ) ) ) | 
						
							| 16 | 15 4 | eqeltrrd |  |-  ( ph -> ( z e. X |-> ( F ` z ) ) e. ( J Cn K ) ) | 
						
							| 17 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 18 | 2 17 | eqeltri |  |-  K e. ( TopOn ` RR ) | 
						
							| 19 | 18 | a1i |  |-  ( ph -> K e. ( TopOn ` RR ) ) | 
						
							| 20 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 21 | 20 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 23 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 24 | 19 22 23 | cnmptc |  |-  ( ph -> ( y e. RR |-> 0 ) e. ( K Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 25 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 26 | 2 25 | eqtri |  |-  K = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 27 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 28 | 27 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 29 | 22 | cnmptid |  |-  ( ph -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 30 | 26 22 28 29 | cnmpt1res |  |-  ( ph -> ( y e. RR |-> y ) e. ( K Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 31 | 20 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 32 | 31 | a1i |  |-  ( ph -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 33 | 19 24 30 32 | cnmpt12f |  |-  ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 34 |  | df-neg |  |-  -u y = ( 0 - y ) | 
						
							| 35 |  | renegcl |  |-  ( y e. RR -> -u y e. RR ) | 
						
							| 36 | 34 35 | eqeltrrid |  |-  ( y e. RR -> ( 0 - y ) e. RR ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ y e. RR ) -> ( 0 - y ) e. RR ) | 
						
							| 38 | 37 | fmpttd |  |-  ( ph -> ( y e. RR |-> ( 0 - y ) ) : RR --> RR ) | 
						
							| 39 | 38 | frnd |  |-  ( ph -> ran ( y e. RR |-> ( 0 - y ) ) C_ RR ) | 
						
							| 40 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( y e. RR |-> ( 0 - y ) ) C_ RR /\ RR C_ CC ) -> ( ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) <-> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 41 | 22 39 28 40 | syl3anc |  |-  ( ph -> ( ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( TopOpen ` CCfld ) ) <-> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) | 
						
							| 42 | 33 41 | mpbid |  |-  ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) | 
						
							| 43 | 26 | oveq2i |  |-  ( K Cn K ) = ( K Cn ( ( TopOpen ` CCfld ) |`t RR ) ) | 
						
							| 44 | 42 43 | eleqtrrdi |  |-  ( ph -> ( y e. RR |-> ( 0 - y ) ) e. ( K Cn K ) ) | 
						
							| 45 |  | negeq |  |-  ( y = ( F ` z ) -> -u y = -u ( F ` z ) ) | 
						
							| 46 | 34 45 | eqtr3id |  |-  ( y = ( F ` z ) -> ( 0 - y ) = -u ( F ` z ) ) | 
						
							| 47 | 9 16 19 44 46 | cnmpt11 |  |-  ( ph -> ( z e. X |-> -u ( F ` z ) ) e. ( J Cn K ) ) | 
						
							| 48 | 1 2 3 47 5 | evth |  |-  ( ph -> E. x e. X A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) ) | 
						
							| 49 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 50 | 49 | negeqd |  |-  ( z = y -> -u ( F ` z ) = -u ( F ` y ) ) | 
						
							| 51 |  | eqid |  |-  ( z e. X |-> -u ( F ` z ) ) = ( z e. X |-> -u ( F ` z ) ) | 
						
							| 52 |  | negex |  |-  -u ( F ` y ) e. _V | 
						
							| 53 | 50 51 52 | fvmpt |  |-  ( y e. X -> ( ( z e. X |-> -u ( F ` z ) ) ` y ) = -u ( F ` y ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( z e. X |-> -u ( F ` z ) ) ` y ) = -u ( F ` y ) ) | 
						
							| 55 |  | fveq2 |  |-  ( z = x -> ( F ` z ) = ( F ` x ) ) | 
						
							| 56 | 55 | negeqd |  |-  ( z = x -> -u ( F ` z ) = -u ( F ` x ) ) | 
						
							| 57 |  | negex |  |-  -u ( F ` x ) e. _V | 
						
							| 58 | 56 51 57 | fvmpt |  |-  ( x e. X -> ( ( z e. X |-> -u ( F ` z ) ) ` x ) = -u ( F ` x ) ) | 
						
							| 59 | 58 | ad2antlr |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( z e. X |-> -u ( F ` z ) ) ` x ) = -u ( F ` x ) ) | 
						
							| 60 | 54 59 | breq12d |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> -u ( F ` y ) <_ -u ( F ` x ) ) ) | 
						
							| 61 | 14 | ffvelcdmda |  |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( F ` x ) e. RR ) | 
						
							| 63 | 14 | ffvelcdmda |  |-  ( ( ph /\ y e. X ) -> ( F ` y ) e. RR ) | 
						
							| 64 | 63 | adantlr |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( F ` y ) e. RR ) | 
						
							| 65 | 62 64 | lenegd |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( F ` x ) <_ ( F ` y ) <-> -u ( F ` y ) <_ -u ( F ` x ) ) ) | 
						
							| 66 | 60 65 | bitr4d |  |-  ( ( ( ph /\ x e. X ) /\ y e. X ) -> ( ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> ( F ` x ) <_ ( F ` y ) ) ) | 
						
							| 67 | 66 | ralbidva |  |-  ( ( ph /\ x e. X ) -> ( A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> A. y e. X ( F ` x ) <_ ( F ` y ) ) ) | 
						
							| 68 | 67 | rexbidva |  |-  ( ph -> ( E. x e. X A. y e. X ( ( z e. X |-> -u ( F ` z ) ) ` y ) <_ ( ( z e. X |-> -u ( F ` z ) ) ` x ) <-> E. x e. X A. y e. X ( F ` x ) <_ ( F ` y ) ) ) | 
						
							| 69 | 48 68 | mpbid |  |-  ( ph -> E. x e. X A. y e. X ( F ` x ) <_ ( F ` y ) ) |