| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthicc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
evthicc.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
evthicc.3 |
|- ( ph -> A <_ B ) |
| 4 |
|
evthicc.4 |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
eqid |
|- U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
| 6 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 7 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
| 8 |
6 7
|
icccmp |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Comp ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Comp ) |
| 10 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 12 |
|
ax-resscn |
|- RR C_ CC |
| 13 |
11 12
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 14 |
|
eqid |
|- ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) = ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) |
| 15 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 16 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
| 17 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 18 |
15 17
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 19 |
14 15 16 18
|
cncfmet |
|- ( ( ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( ( A [,] B ) -cn-> RR ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) ) |
| 20 |
13 12 19
|
sylancl |
|- ( ph -> ( ( A [,] B ) -cn-> RR ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) ) |
| 21 |
6 16
|
resubmet |
|- ( ( A [,] B ) C_ RR -> ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 22 |
11 21
|
syl |
|- ( ph -> ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ph -> ( ( A [,] B ) -cn-> RR ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 25 |
4 24
|
eleqtrd |
|- ( ph -> F e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 26 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 27 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 28 |
27
|
restuni |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( A [,] B ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 29 |
26 11 28
|
sylancr |
|- ( ph -> ( A [,] B ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 30 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 31 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 32 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 33 |
30 31 3 32
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 34 |
33
|
ne0d |
|- ( ph -> ( A [,] B ) =/= (/) ) |
| 35 |
29 34
|
eqnetrrd |
|- ( ph -> U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) =/= (/) ) |
| 36 |
5 6 9 25 35
|
evth |
|- ( ph -> E. x e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) |
| 37 |
29
|
raleqdv |
|- ( ph -> ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) <-> A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) ) |
| 38 |
29 37
|
rexeqbidv |
|- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) <-> E. x e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) ) |
| 39 |
36 38
|
mpbird |
|- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) ) |
| 40 |
5 6 9 25 35
|
evth2 |
|- ( ph -> E. z e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) |
| 41 |
29
|
raleqdv |
|- ( ph -> ( A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) <-> A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) ) |
| 42 |
29 41
|
rexeqbidv |
|- ( ph -> ( E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) <-> E. z e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) ) |
| 43 |
40 42
|
mpbird |
|- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) ) |
| 44 |
39 43
|
jca |
|- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) ) ) |