| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evthiccabs.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | evthiccabs.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | evthiccabs.aleb |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | evthiccabs.f |  |-  ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 5 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 6 |  | ssid |  |-  CC C_ CC | 
						
							| 7 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) | 
						
							| 9 | 8 4 | sselid |  |-  ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 10 |  | abscncf |  |-  abs e. ( CC -cn-> RR ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> abs e. ( CC -cn-> RR ) ) | 
						
							| 12 | 9 11 | cncfco |  |-  ( ph -> ( abs o. F ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 13 | 1 2 3 12 | evthicc |  |-  ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) ) | 
						
							| 15 |  | cncff |  |-  ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) | 
						
							| 16 |  | ffun |  |-  ( F : ( A [,] B ) --> RR -> Fun F ) | 
						
							| 17 | 4 15 16 | 3syl |  |-  ( ph -> Fun F ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> Fun F ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) | 
						
							| 20 |  | fdm |  |-  ( F : ( A [,] B ) --> RR -> dom F = ( A [,] B ) ) | 
						
							| 21 | 4 15 20 | 3syl |  |-  ( ph -> dom F = ( A [,] B ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ph -> ( A [,] B ) = dom F ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) | 
						
							| 24 | 19 23 | eleqtrd |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> y e. dom F ) | 
						
							| 25 |  | fvco |  |-  ( ( Fun F /\ y e. dom F ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) | 
						
							| 26 | 18 24 25 | syl2anc |  |-  ( ( ph /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) | 
						
							| 27 | 26 | adantlr |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) | 
						
							| 28 | 17 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> Fun F ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) | 
						
							| 30 | 22 | adantr |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) | 
						
							| 31 | 29 30 | eleqtrd |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) | 
						
							| 32 |  | fvco |  |-  ( ( Fun F /\ x e. dom F ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) | 
						
							| 33 | 28 31 32 | syl2anc |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) | 
						
							| 35 | 27 34 | breq12d |  |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) | 
						
							| 36 | 35 | ralbidva |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) | 
						
							| 37 | 36 | rexbidva |  |-  ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) | 
						
							| 38 | 14 37 | mpbid |  |-  ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) | 
						
							| 39 | 13 | simprd |  |-  ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) | 
						
							| 40 | 17 | adantr |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> Fun F ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> z e. ( A [,] B ) ) | 
						
							| 42 | 22 | adantr |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) | 
						
							| 43 | 41 42 | eleqtrd |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> z e. dom F ) | 
						
							| 44 |  | fvco |  |-  ( ( Fun F /\ z e. dom F ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) | 
						
							| 45 | 40 43 44 | syl2anc |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) | 
						
							| 47 | 17 | adantr |  |-  ( ( ph /\ w e. ( A [,] B ) ) -> Fun F ) | 
						
							| 48 |  | simpr |  |-  ( ( ph /\ w e. ( A [,] B ) ) -> w e. ( A [,] B ) ) | 
						
							| 49 | 22 | adantr |  |-  ( ( ph /\ w e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) | 
						
							| 50 | 48 49 | eleqtrd |  |-  ( ( ph /\ w e. ( A [,] B ) ) -> w e. dom F ) | 
						
							| 51 |  | fvco |  |-  ( ( Fun F /\ w e. dom F ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) | 
						
							| 52 | 47 50 51 | syl2anc |  |-  ( ( ph /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) | 
						
							| 53 | 52 | adantlr |  |-  ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) | 
						
							| 54 | 46 53 | breq12d |  |-  ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) | 
						
							| 55 | 54 | ralbidva |  |-  ( ( ph /\ z e. ( A [,] B ) ) -> ( A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) | 
						
							| 56 | 55 | rexbidva |  |-  ( ph -> ( E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) | 
						
							| 57 | 39 56 | mpbid |  |-  ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) | 
						
							| 58 | 38 57 | jca |  |-  ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |