Step |
Hyp |
Ref |
Expression |
1 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
2 |
1
|
oveq1i |
|- ( 5 _C 3 ) = ( ( 4 + 1 ) _C 3 ) |
3 |
|
4bc3eq4 |
|- ( 4 _C 3 ) = 4 |
4 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
5 |
4
|
oveq2i |
|- ( 4 _C ( 3 - 1 ) ) = ( 4 _C 2 ) |
6 |
|
4bc2eq6 |
|- ( 4 _C 2 ) = 6 |
7 |
5 6
|
eqtri |
|- ( 4 _C ( 3 - 1 ) ) = 6 |
8 |
3 7
|
oveq12i |
|- ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( 4 + 6 ) |
9 |
|
4nn0 |
|- 4 e. NN0 |
10 |
|
3z |
|- 3 e. ZZ |
11 |
|
bcpasc |
|- ( ( 4 e. NN0 /\ 3 e. ZZ ) -> ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 ) ) |
12 |
9 10 11
|
mp2an |
|- ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 ) |
13 |
|
6cn |
|- 6 e. CC |
14 |
|
4cn |
|- 4 e. CC |
15 |
|
6p4e10 |
|- ( 6 + 4 ) = ; 1 0 |
16 |
13 14 15
|
addcomli |
|- ( 4 + 6 ) = ; 1 0 |
17 |
8 12 16
|
3eqtr3i |
|- ( ( 4 + 1 ) _C 3 ) = ; 1 0 |
18 |
2 17
|
eqtri |
|- ( 5 _C 3 ) = ; 1 0 |