Metamath Proof Explorer


Theorem ex-bc

Description: Example for df-bc . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-bc
|- ( 5 _C 3 ) = ; 1 0

Proof

Step Hyp Ref Expression
1 df-5
 |-  5 = ( 4 + 1 )
2 1 oveq1i
 |-  ( 5 _C 3 ) = ( ( 4 + 1 ) _C 3 )
3 4bc3eq4
 |-  ( 4 _C 3 ) = 4
4 3m1e2
 |-  ( 3 - 1 ) = 2
5 4 oveq2i
 |-  ( 4 _C ( 3 - 1 ) ) = ( 4 _C 2 )
6 4bc2eq6
 |-  ( 4 _C 2 ) = 6
7 5 6 eqtri
 |-  ( 4 _C ( 3 - 1 ) ) = 6
8 3 7 oveq12i
 |-  ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( 4 + 6 )
9 4nn0
 |-  4 e. NN0
10 3z
 |-  3 e. ZZ
11 bcpasc
 |-  ( ( 4 e. NN0 /\ 3 e. ZZ ) -> ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 ) )
12 9 10 11 mp2an
 |-  ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 )
13 6cn
 |-  6 e. CC
14 4cn
 |-  4 e. CC
15 6p4e10
 |-  ( 6 + 4 ) = ; 1 0
16 13 14 15 addcomli
 |-  ( 4 + 6 ) = ; 1 0
17 8 12 16 3eqtr3i
 |-  ( ( 4 + 1 ) _C 3 ) = ; 1 0
18 2 17 eqtri
 |-  ( 5 _C 3 ) = ; 1 0