Metamath Proof Explorer


Theorem ex-br

Description: Example for df-br . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-br
|- ( R = { <. 2 , 6 >. , <. 3 , 9 >. } -> 3 R 9 )

Proof

Step Hyp Ref Expression
1 opex
 |-  <. 3 , 9 >. e. _V
2 1 prid2
 |-  <. 3 , 9 >. e. { <. 2 , 6 >. , <. 3 , 9 >. }
3 id
 |-  ( R = { <. 2 , 6 >. , <. 3 , 9 >. } -> R = { <. 2 , 6 >. , <. 3 , 9 >. } )
4 2 3 eleqtrrid
 |-  ( R = { <. 2 , 6 >. , <. 3 , 9 >. } -> <. 3 , 9 >. e. R )
5 df-br
 |-  ( 3 R 9 <-> <. 3 , 9 >. e. R )
6 4 5 sylibr
 |-  ( R = { <. 2 , 6 >. , <. 3 , 9 >. } -> 3 R 9 )