Metamath Proof Explorer


Theorem ex-co

Description: Example for df-co . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-co
|- ( ( exp o. cos ) ` 0 ) = _e

Proof

Step Hyp Ref Expression
1 cos0
 |-  ( cos ` 0 ) = 1
2 1 fveq2i
 |-  ( exp ` ( cos ` 0 ) ) = ( exp ` 1 )
3 cosf
 |-  cos : CC --> CC
4 0cn
 |-  0 e. CC
5 fvco3
 |-  ( ( cos : CC --> CC /\ 0 e. CC ) -> ( ( exp o. cos ) ` 0 ) = ( exp ` ( cos ` 0 ) ) )
6 3 4 5 mp2an
 |-  ( ( exp o. cos ) ` 0 ) = ( exp ` ( cos ` 0 ) )
7 df-e
 |-  _e = ( exp ` 1 )
8 2 6 7 3eqtr4i
 |-  ( ( exp o. cos ) ` 0 ) = _e