Metamath Proof Explorer


Theorem ex-dvds

Description: Example for df-dvds : 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015)

Ref Expression
Assertion ex-dvds
|- 3 || 6

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 3z
 |-  3 e. ZZ
3 6nn
 |-  6 e. NN
4 3 nnzi
 |-  6 e. ZZ
5 1 2 4 3pm3.2i
 |-  ( 2 e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ )
6 3cn
 |-  3 e. CC
7 6 2timesi
 |-  ( 2 x. 3 ) = ( 3 + 3 )
8 3p3e6
 |-  ( 3 + 3 ) = 6
9 7 8 eqtri
 |-  ( 2 x. 3 ) = 6
10 dvds0lem
 |-  ( ( ( 2 e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) /\ ( 2 x. 3 ) = 6 ) -> 3 || 6 )
11 5 9 10 mp2an
 |-  3 || 6