Metamath Proof Explorer


Theorem ex-eprel

Description: Example for df-eprel . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion ex-eprel
|- 5 _E { 1 , 5 }

Proof

Step Hyp Ref Expression
1 5nn
 |-  5 e. NN
2 1 elexi
 |-  5 e. _V
3 2 prid2
 |-  5 e. { 1 , 5 }
4 prex
 |-  { 1 , 5 } e. _V
5 4 epeli
 |-  ( 5 _E { 1 , 5 } <-> 5 e. { 1 , 5 } )
6 3 5 mpbir
 |-  5 _E { 1 , 5 }