Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
3re |
|- 3 e. RR |
3 |
2
|
rehalfcli |
|- ( 3 / 2 ) e. RR |
4 |
|
2cn |
|- 2 e. CC |
5 |
4
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
6 |
|
2lt3 |
|- 2 < 3 |
7 |
5 6
|
eqbrtri |
|- ( 1 x. 2 ) < 3 |
8 |
|
2pos |
|- 0 < 2 |
9 |
|
2re |
|- 2 e. RR |
10 |
1 2 9
|
ltmuldivi |
|- ( 0 < 2 -> ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) ) |
11 |
8 10
|
ax-mp |
|- ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) |
12 |
7 11
|
mpbi |
|- 1 < ( 3 / 2 ) |
13 |
1 3 12
|
ltleii |
|- 1 <_ ( 3 / 2 ) |
14 |
|
3lt4 |
|- 3 < 4 |
15 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
16 |
14 15
|
breqtrri |
|- 3 < ( 2 x. 2 ) |
17 |
9 8
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
18 |
|
ltdivmul |
|- ( ( 3 e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) ) |
19 |
2 9 17 18
|
mp3an |
|- ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) |
20 |
16 19
|
mpbir |
|- ( 3 / 2 ) < 2 |
21 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
22 |
20 21
|
breqtri |
|- ( 3 / 2 ) < ( 1 + 1 ) |
23 |
|
1z |
|- 1 e. ZZ |
24 |
|
flbi |
|- ( ( ( 3 / 2 ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) ) |
25 |
3 23 24
|
mp2an |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) |
26 |
13 22 25
|
mpbir2an |
|- ( |_ ` ( 3 / 2 ) ) = 1 |
27 |
9
|
renegcli |
|- -u 2 e. RR |
28 |
3
|
renegcli |
|- -u ( 3 / 2 ) e. RR |
29 |
3 9
|
ltnegi |
|- ( ( 3 / 2 ) < 2 <-> -u 2 < -u ( 3 / 2 ) ) |
30 |
20 29
|
mpbi |
|- -u 2 < -u ( 3 / 2 ) |
31 |
27 28 30
|
ltleii |
|- -u 2 <_ -u ( 3 / 2 ) |
32 |
4
|
negcli |
|- -u 2 e. CC |
33 |
|
ax-1cn |
|- 1 e. CC |
34 |
|
negdi2 |
|- ( ( -u 2 e. CC /\ 1 e. CC ) -> -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) ) |
35 |
32 33 34
|
mp2an |
|- -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) |
36 |
4
|
negnegi |
|- -u -u 2 = 2 |
37 |
36
|
oveq1i |
|- ( -u -u 2 - 1 ) = ( 2 - 1 ) |
38 |
35 37
|
eqtri |
|- -u ( -u 2 + 1 ) = ( 2 - 1 ) |
39 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
40 |
39 12
|
eqbrtri |
|- ( 2 - 1 ) < ( 3 / 2 ) |
41 |
38 40
|
eqbrtri |
|- -u ( -u 2 + 1 ) < ( 3 / 2 ) |
42 |
27 1
|
readdcli |
|- ( -u 2 + 1 ) e. RR |
43 |
42 3
|
ltnegcon1i |
|- ( -u ( -u 2 + 1 ) < ( 3 / 2 ) <-> -u ( 3 / 2 ) < ( -u 2 + 1 ) ) |
44 |
41 43
|
mpbi |
|- -u ( 3 / 2 ) < ( -u 2 + 1 ) |
45 |
|
2z |
|- 2 e. ZZ |
46 |
|
znegcl |
|- ( 2 e. ZZ -> -u 2 e. ZZ ) |
47 |
45 46
|
ax-mp |
|- -u 2 e. ZZ |
48 |
|
flbi |
|- ( ( -u ( 3 / 2 ) e. RR /\ -u 2 e. ZZ ) -> ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) ) |
49 |
28 47 48
|
mp2an |
|- ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) |
50 |
31 44 49
|
mpbir2an |
|- ( |_ ` -u ( 3 / 2 ) ) = -u 2 |
51 |
26 50
|
pm3.2i |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) |