| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | 3re |  |-  3 e. RR | 
						
							| 3 | 2 | rehalfcli |  |-  ( 3 / 2 ) e. RR | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 | 4 | mullidi |  |-  ( 1 x. 2 ) = 2 | 
						
							| 6 |  | 2lt3 |  |-  2 < 3 | 
						
							| 7 | 5 6 | eqbrtri |  |-  ( 1 x. 2 ) < 3 | 
						
							| 8 |  | 2pos |  |-  0 < 2 | 
						
							| 9 |  | 2re |  |-  2 e. RR | 
						
							| 10 | 1 2 9 | ltmuldivi |  |-  ( 0 < 2 -> ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) ) | 
						
							| 11 | 8 10 | ax-mp |  |-  ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) | 
						
							| 12 | 7 11 | mpbi |  |-  1 < ( 3 / 2 ) | 
						
							| 13 | 1 3 12 | ltleii |  |-  1 <_ ( 3 / 2 ) | 
						
							| 14 |  | 3lt4 |  |-  3 < 4 | 
						
							| 15 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 16 | 14 15 | breqtrri |  |-  3 < ( 2 x. 2 ) | 
						
							| 17 | 9 8 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 18 |  | ltdivmul |  |-  ( ( 3 e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) ) | 
						
							| 19 | 2 9 17 18 | mp3an |  |-  ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) | 
						
							| 20 | 16 19 | mpbir |  |-  ( 3 / 2 ) < 2 | 
						
							| 21 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 22 | 20 21 | breqtri |  |-  ( 3 / 2 ) < ( 1 + 1 ) | 
						
							| 23 |  | 1z |  |-  1 e. ZZ | 
						
							| 24 |  | flbi |  |-  ( ( ( 3 / 2 ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) ) | 
						
							| 25 | 3 23 24 | mp2an |  |-  ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) | 
						
							| 26 | 13 22 25 | mpbir2an |  |-  ( |_ ` ( 3 / 2 ) ) = 1 | 
						
							| 27 | 9 | renegcli |  |-  -u 2 e. RR | 
						
							| 28 | 3 | renegcli |  |-  -u ( 3 / 2 ) e. RR | 
						
							| 29 | 3 9 | ltnegi |  |-  ( ( 3 / 2 ) < 2 <-> -u 2 < -u ( 3 / 2 ) ) | 
						
							| 30 | 20 29 | mpbi |  |-  -u 2 < -u ( 3 / 2 ) | 
						
							| 31 | 27 28 30 | ltleii |  |-  -u 2 <_ -u ( 3 / 2 ) | 
						
							| 32 | 4 | negcli |  |-  -u 2 e. CC | 
						
							| 33 |  | ax-1cn |  |-  1 e. CC | 
						
							| 34 |  | negdi2 |  |-  ( ( -u 2 e. CC /\ 1 e. CC ) -> -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) ) | 
						
							| 35 | 32 33 34 | mp2an |  |-  -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) | 
						
							| 36 | 4 | negnegi |  |-  -u -u 2 = 2 | 
						
							| 37 | 36 | oveq1i |  |-  ( -u -u 2 - 1 ) = ( 2 - 1 ) | 
						
							| 38 | 35 37 | eqtri |  |-  -u ( -u 2 + 1 ) = ( 2 - 1 ) | 
						
							| 39 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 40 | 39 12 | eqbrtri |  |-  ( 2 - 1 ) < ( 3 / 2 ) | 
						
							| 41 | 38 40 | eqbrtri |  |-  -u ( -u 2 + 1 ) < ( 3 / 2 ) | 
						
							| 42 | 27 1 | readdcli |  |-  ( -u 2 + 1 ) e. RR | 
						
							| 43 | 42 3 | ltnegcon1i |  |-  ( -u ( -u 2 + 1 ) < ( 3 / 2 ) <-> -u ( 3 / 2 ) < ( -u 2 + 1 ) ) | 
						
							| 44 | 41 43 | mpbi |  |-  -u ( 3 / 2 ) < ( -u 2 + 1 ) | 
						
							| 45 |  | 2z |  |-  2 e. ZZ | 
						
							| 46 |  | znegcl |  |-  ( 2 e. ZZ -> -u 2 e. ZZ ) | 
						
							| 47 | 45 46 | ax-mp |  |-  -u 2 e. ZZ | 
						
							| 48 |  | flbi |  |-  ( ( -u ( 3 / 2 ) e. RR /\ -u 2 e. ZZ ) -> ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) ) | 
						
							| 49 | 28 47 48 | mp2an |  |-  ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) | 
						
							| 50 | 31 44 49 | mpbir2an |  |-  ( |_ ` -u ( 3 / 2 ) ) = -u 2 | 
						
							| 51 | 26 50 | pm3.2i |  |-  ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) |