Metamath Proof Explorer


Theorem ex-fv

Description: Example for df-fv . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-fv
|- ( F = { <. 2 , 6 >. , <. 3 , 9 >. } -> ( F ` 3 ) = 9 )

Proof

Step Hyp Ref Expression
1 fveq1
 |-  ( F = { <. 2 , 6 >. , <. 3 , 9 >. } -> ( F ` 3 ) = ( { <. 2 , 6 >. , <. 3 , 9 >. } ` 3 ) )
2 2re
 |-  2 e. RR
3 2lt3
 |-  2 < 3
4 2 3 ltneii
 |-  2 =/= 3
5 3ex
 |-  3 e. _V
6 9re
 |-  9 e. RR
7 6 elexi
 |-  9 e. _V
8 5 7 fvpr2
 |-  ( 2 =/= 3 -> ( { <. 2 , 6 >. , <. 3 , 9 >. } ` 3 ) = 9 )
9 4 8 ax-mp
 |-  ( { <. 2 , 6 >. , <. 3 , 9 >. } ` 3 ) = 9
10 1 9 eqtrdi
 |-  ( F = { <. 2 , 6 >. , <. 3 , 9 >. } -> ( F ` 3 ) = 9 )