Metamath Proof Explorer


Theorem ex-hash

Description: Example for df-hash . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-hash
|- ( # ` { 0 , 1 , 2 } ) = 3

Proof

Step Hyp Ref Expression
1 df-tp
 |-  { 0 , 1 , 2 } = ( { 0 , 1 } u. { 2 } )
2 1 fveq2i
 |-  ( # ` { 0 , 1 , 2 } ) = ( # ` ( { 0 , 1 } u. { 2 } ) )
3 prfi
 |-  { 0 , 1 } e. Fin
4 snfi
 |-  { 2 } e. Fin
5 2ne0
 |-  2 =/= 0
6 1ne2
 |-  1 =/= 2
7 6 necomi
 |-  2 =/= 1
8 5 7 nelpri
 |-  -. 2 e. { 0 , 1 }
9 disjsn
 |-  ( ( { 0 , 1 } i^i { 2 } ) = (/) <-> -. 2 e. { 0 , 1 } )
10 8 9 mpbir
 |-  ( { 0 , 1 } i^i { 2 } ) = (/)
11 hashun
 |-  ( ( { 0 , 1 } e. Fin /\ { 2 } e. Fin /\ ( { 0 , 1 } i^i { 2 } ) = (/) ) -> ( # ` ( { 0 , 1 } u. { 2 } ) ) = ( ( # ` { 0 , 1 } ) + ( # ` { 2 } ) ) )
12 3 4 10 11 mp3an
 |-  ( # ` ( { 0 , 1 } u. { 2 } ) ) = ( ( # ` { 0 , 1 } ) + ( # ` { 2 } ) )
13 2 12 eqtri
 |-  ( # ` { 0 , 1 , 2 } ) = ( ( # ` { 0 , 1 } ) + ( # ` { 2 } ) )
14 prhash2ex
 |-  ( # ` { 0 , 1 } ) = 2
15 2z
 |-  2 e. ZZ
16 hashsng
 |-  ( 2 e. ZZ -> ( # ` { 2 } ) = 1 )
17 15 16 ax-mp
 |-  ( # ` { 2 } ) = 1
18 14 17 oveq12i
 |-  ( ( # ` { 0 , 1 } ) + ( # ` { 2 } ) ) = ( 2 + 1 )
19 2p1e3
 |-  ( 2 + 1 ) = 3
20 18 19 eqtri
 |-  ( ( # ` { 0 , 1 } ) + ( # ` { 2 } ) ) = 3
21 13 20 eqtri
 |-  ( # ` { 0 , 1 , 2 } ) = 3