Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( k = 0 -> ( 4 ^ k ) = ( 4 ^ 0 ) ) |
2 |
1
|
oveq1d |
|- ( k = 0 -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ 0 ) + 2 ) ) |
3 |
2
|
breq2d |
|- ( k = 0 -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ 0 ) + 2 ) ) ) |
4 |
|
oveq2 |
|- ( k = n -> ( 4 ^ k ) = ( 4 ^ n ) ) |
5 |
4
|
oveq1d |
|- ( k = n -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ n ) + 2 ) ) |
6 |
5
|
breq2d |
|- ( k = n -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ n ) + 2 ) ) ) |
7 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( 4 ^ k ) = ( 4 ^ ( n + 1 ) ) ) |
8 |
7
|
oveq1d |
|- ( k = ( n + 1 ) -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ ( n + 1 ) ) + 2 ) ) |
9 |
8
|
breq2d |
|- ( k = ( n + 1 ) -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) |
10 |
|
oveq2 |
|- ( k = N -> ( 4 ^ k ) = ( 4 ^ N ) ) |
11 |
10
|
oveq1d |
|- ( k = N -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ N ) + 2 ) ) |
12 |
11
|
breq2d |
|- ( k = N -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ N ) + 2 ) ) ) |
13 |
|
3z |
|- 3 e. ZZ |
14 |
|
iddvds |
|- ( 3 e. ZZ -> 3 || 3 ) |
15 |
13 14
|
ax-mp |
|- 3 || 3 |
16 |
|
4nn0 |
|- 4 e. NN0 |
17 |
16
|
numexp0 |
|- ( 4 ^ 0 ) = 1 |
18 |
17
|
oveq1i |
|- ( ( 4 ^ 0 ) + 2 ) = ( 1 + 2 ) |
19 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
20 |
18 19
|
eqtri |
|- ( ( 4 ^ 0 ) + 2 ) = 3 |
21 |
15 20
|
breqtrri |
|- 3 || ( ( 4 ^ 0 ) + 2 ) |
22 |
13
|
a1i |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 e. ZZ ) |
23 |
16
|
a1i |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. NN0 ) |
24 |
|
simpl |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> n e. NN0 ) |
25 |
23 24
|
nn0expcld |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. NN0 ) |
26 |
25
|
nn0zd |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) |
27 |
|
2z |
|- 2 e. ZZ |
28 |
27
|
a1i |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 2 e. ZZ ) |
29 |
26 28
|
zaddcld |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) |
30 |
|
4z |
|- 4 e. ZZ |
31 |
30
|
a1i |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. ZZ ) |
32 |
29 31
|
zmulcld |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) e. ZZ ) |
33 |
22 28
|
zmulcld |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 3 x. 2 ) e. ZZ ) |
34 |
16
|
a1i |
|- ( n e. NN0 -> 4 e. NN0 ) |
35 |
|
id |
|- ( n e. NN0 -> n e. NN0 ) |
36 |
34 35
|
nn0expcld |
|- ( n e. NN0 -> ( 4 ^ n ) e. NN0 ) |
37 |
36
|
nn0zd |
|- ( n e. NN0 -> ( 4 ^ n ) e. ZZ ) |
38 |
37
|
adantr |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) |
39 |
38 28
|
zaddcld |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) |
40 |
|
simpr |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ n ) + 2 ) ) |
41 |
22 39 31 40
|
dvdsmultr1d |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( 4 ^ n ) + 2 ) x. 4 ) ) |
42 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 3 || ( 3 x. 2 ) ) |
43 |
13 27 42
|
mp2an |
|- 3 || ( 3 x. 2 ) |
44 |
43
|
a1i |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( 3 x. 2 ) ) |
45 |
22 32 33 41 44
|
dvds2subd |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
46 |
36
|
nn0cnd |
|- ( n e. NN0 -> ( 4 ^ n ) e. CC ) |
47 |
|
2cnd |
|- ( n e. NN0 -> 2 e. CC ) |
48 |
|
4cn |
|- 4 e. CC |
49 |
48
|
a1i |
|- ( n e. NN0 -> 4 e. CC ) |
50 |
46 47 49
|
adddird |
|- ( n e. NN0 -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) = ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) ) |
51 |
50
|
oveq1d |
|- ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) |
52 |
|
3cn |
|- 3 e. CC |
53 |
|
2cn |
|- 2 e. CC |
54 |
52 53
|
mulcomi |
|- ( 3 x. 2 ) = ( 2 x. 3 ) |
55 |
54
|
a1i |
|- ( n e. NN0 -> ( 3 x. 2 ) = ( 2 x. 3 ) ) |
56 |
55
|
oveq2d |
|- ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) ) |
57 |
49 35
|
expp1d |
|- ( n e. NN0 -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) |
58 |
|
ax-1cn |
|- 1 e. CC |
59 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
60 |
52 58 59
|
addcomli |
|- ( 1 + 3 ) = 4 |
61 |
60
|
eqcomi |
|- 4 = ( 1 + 3 ) |
62 |
58 52 61
|
mvrraddi |
|- ( 4 - 3 ) = 1 |
63 |
62
|
oveq2i |
|- ( 2 x. ( 4 - 3 ) ) = ( 2 x. 1 ) |
64 |
53 48 52
|
subdii |
|- ( 2 x. ( 4 - 3 ) ) = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) |
65 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
66 |
63 64 65
|
3eqtr3ri |
|- 2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) |
67 |
66
|
a1i |
|- ( n e. NN0 -> 2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) |
68 |
57 67
|
oveq12d |
|- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) |
69 |
46 49
|
mulcld |
|- ( n e. NN0 -> ( ( 4 ^ n ) x. 4 ) e. CC ) |
70 |
47 49
|
mulcld |
|- ( n e. NN0 -> ( 2 x. 4 ) e. CC ) |
71 |
52
|
a1i |
|- ( n e. NN0 -> 3 e. CC ) |
72 |
47 71
|
mulcld |
|- ( n e. NN0 -> ( 2 x. 3 ) e. CC ) |
73 |
69 70 72
|
addsubassd |
|- ( n e. NN0 -> ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) |
74 |
68 73
|
eqtr4d |
|- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) |
75 |
51 56 74
|
3eqtr4rd |
|- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
76 |
75
|
adantr |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
77 |
45 76
|
breqtrrd |
|- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) |
78 |
77
|
ex |
|- ( n e. NN0 -> ( 3 || ( ( 4 ^ n ) + 2 ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) |
79 |
3 6 9 12 21 78
|
nn0ind |
|- ( N e. NN0 -> 3 || ( ( 4 ^ N ) + 2 ) ) |