| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 6nn |  |-  6 e. NN | 
						
							| 2 |  | 9nn |  |-  9 e. NN | 
						
							| 3 | 1 2 | nnmulcli |  |-  ( 6 x. 9 ) e. NN | 
						
							| 4 | 3 | nncni |  |-  ( 6 x. 9 ) e. CC | 
						
							| 5 | 1 | nnzi |  |-  6 e. ZZ | 
						
							| 6 | 2 | nnzi |  |-  9 e. ZZ | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( 6 e. ZZ /\ 9 e. ZZ ) | 
						
							| 8 |  | lcmcl |  |-  ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( 6 lcm 9 ) e. NN0 ) | 
						
							| 9 | 8 | nn0cnd |  |-  ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( 6 lcm 9 ) e. CC ) | 
						
							| 10 | 7 9 | ax-mp |  |-  ( 6 lcm 9 ) e. CC | 
						
							| 11 |  | neggcd |  |-  ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( -u 6 gcd 9 ) = ( 6 gcd 9 ) ) | 
						
							| 12 | 7 11 | ax-mp |  |-  ( -u 6 gcd 9 ) = ( 6 gcd 9 ) | 
						
							| 13 | 12 | eqcomi |  |-  ( 6 gcd 9 ) = ( -u 6 gcd 9 ) | 
						
							| 14 |  | ex-gcd |  |-  ( -u 6 gcd 9 ) = 3 | 
						
							| 15 | 13 14 | eqtri |  |-  ( 6 gcd 9 ) = 3 | 
						
							| 16 |  | 3cn |  |-  3 e. CC | 
						
							| 17 | 15 16 | eqeltri |  |-  ( 6 gcd 9 ) e. CC | 
						
							| 18 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 19 | 15 18 | eqnetri |  |-  ( 6 gcd 9 ) =/= 0 | 
						
							| 20 | 17 19 | pm3.2i |  |-  ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) | 
						
							| 21 | 1 2 | pm3.2i |  |-  ( 6 e. NN /\ 9 e. NN ) | 
						
							| 22 |  | lcmgcdnn |  |-  ( ( 6 e. NN /\ 9 e. NN ) -> ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) = ( 6 x. 9 ) ) | 
						
							| 23 | 21 22 | mp1i |  |-  ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) = ( 6 x. 9 ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( 6 x. 9 ) = ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) ) | 
						
							| 25 |  | divmul3 |  |-  ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) <-> ( 6 x. 9 ) = ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) ) ) | 
						
							| 26 | 24 25 | mpbird |  |-  ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( 6 lcm 9 ) = ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) ) | 
						
							| 28 | 4 10 20 27 | mp3an |  |-  ( 6 lcm 9 ) = ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) | 
						
							| 29 | 15 | oveq2i |  |-  ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( ( 6 x. 9 ) / 3 ) | 
						
							| 30 |  | 6cn |  |-  6 e. CC | 
						
							| 31 |  | 9cn |  |-  9 e. CC | 
						
							| 32 | 30 31 16 18 | divassi |  |-  ( ( 6 x. 9 ) / 3 ) = ( 6 x. ( 9 / 3 ) ) | 
						
							| 33 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 34 | 33 | eqcomi |  |-  9 = ( 3 x. 3 ) | 
						
							| 35 | 34 | oveq1i |  |-  ( 9 / 3 ) = ( ( 3 x. 3 ) / 3 ) | 
						
							| 36 | 16 16 18 | divcan3i |  |-  ( ( 3 x. 3 ) / 3 ) = 3 | 
						
							| 37 | 35 36 | eqtri |  |-  ( 9 / 3 ) = 3 | 
						
							| 38 | 37 | oveq2i |  |-  ( 6 x. ( 9 / 3 ) ) = ( 6 x. 3 ) | 
						
							| 39 |  | 6t3e18 |  |-  ( 6 x. 3 ) = ; 1 8 | 
						
							| 40 | 32 38 39 | 3eqtri |  |-  ( ( 6 x. 9 ) / 3 ) = ; 1 8 | 
						
							| 41 | 28 29 40 | 3eqtri |  |-  ( 6 lcm 9 ) = ; 1 8 |