Metamath Proof Explorer


Theorem ex-natded5.13-2

Description: A more efficient proof of Theorem 5.13 of Clemente p. 20. Compare with ex-natded5.13 . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ex-natded5.13.1
|- ( ph -> ( ps \/ ch ) )
ex-natded5.13.2
|- ( ph -> ( ps -> th ) )
ex-natded5.13.3
|- ( ph -> ( -. ta -> -. ch ) )
Assertion ex-natded5.13-2
|- ( ph -> ( th \/ ta ) )

Proof

Step Hyp Ref Expression
1 ex-natded5.13.1
 |-  ( ph -> ( ps \/ ch ) )
2 ex-natded5.13.2
 |-  ( ph -> ( ps -> th ) )
3 ex-natded5.13.3
 |-  ( ph -> ( -. ta -> -. ch ) )
4 3 con4d
 |-  ( ph -> ( ch -> ta ) )
5 2 4 orim12d
 |-  ( ph -> ( ( ps \/ ch ) -> ( th \/ ta ) ) )
6 1 5 mpd
 |-  ( ph -> ( th \/ ta ) )