Metamath Proof Explorer


Theorem ex-natded5.8-2

Description: A more efficient proof of Theorem 5.8 of Clemente p. 20. For a longer line-by-line translation, see ex-natded5.8 . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ex-natded5.8.1
|- ( ph -> ( ( ps /\ ch ) -> -. th ) )
ex-natded5.8.2
|- ( ph -> ( ta -> th ) )
ex-natded5.8.3
|- ( ph -> ch )
ex-natded5.8.4
|- ( ph -> ta )
Assertion ex-natded5.8-2
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 ex-natded5.8.1
 |-  ( ph -> ( ( ps /\ ch ) -> -. th ) )
2 ex-natded5.8.2
 |-  ( ph -> ( ta -> th ) )
3 ex-natded5.8.3
 |-  ( ph -> ch )
4 ex-natded5.8.4
 |-  ( ph -> ta )
5 4 2 mpd
 |-  ( ph -> th )
6 3 1 mpan2d
 |-  ( ph -> ( ps -> -. th ) )
7 5 6 mt2d
 |-  ( ph -> -. ps )