Metamath Proof Explorer


Theorem ex-natded9.20-2

Description: A more efficient proof of Theorem 9.20 of Clemente p. 45. Compare with ex-natded9.20 . (Contributed by David A. Wheeler, 19-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ex-natded9.20.1
|- ( ph -> ( ps /\ ( ch \/ th ) ) )
Assertion ex-natded9.20-2
|- ( ph -> ( ( ps /\ ch ) \/ ( ps /\ th ) ) )

Proof

Step Hyp Ref Expression
1 ex-natded9.20.1
 |-  ( ph -> ( ps /\ ( ch \/ th ) ) )
2 1 simpld
 |-  ( ph -> ps )
3 2 anim1i
 |-  ( ( ph /\ ch ) -> ( ps /\ ch ) )
4 3 orcd
 |-  ( ( ph /\ ch ) -> ( ( ps /\ ch ) \/ ( ps /\ th ) ) )
5 2 anim1i
 |-  ( ( ph /\ th ) -> ( ps /\ th ) )
6 5 olcd
 |-  ( ( ph /\ th ) -> ( ( ps /\ ch ) \/ ( ps /\ th ) ) )
7 1 simprd
 |-  ( ph -> ( ch \/ th ) )
8 4 6 7 mpjaodan
 |-  ( ph -> ( ( ps /\ ch ) \/ ( ps /\ th ) ) )