Metamath Proof Explorer


Theorem ex-natded9.26-2

Description: A more efficient proof of Theorem 9.26 of Clemente p. 45. Compare with ex-natded9.26 . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ex-natded9.26.1
|- ( ph -> E. x A. y ps )
Assertion ex-natded9.26-2
|- ( ph -> A. y E. x ps )

Proof

Step Hyp Ref Expression
1 ex-natded9.26.1
 |-  ( ph -> E. x A. y ps )
2 sp
 |-  ( A. y ps -> ps )
3 2 eximi
 |-  ( E. x A. y ps -> E. x ps )
4 1 3 syl
 |-  ( ph -> E. x ps )
5 4 alrimiv
 |-  ( ph -> A. y E. x ps )