Description: Example for df-pr . (Contributed by Mario Carneiro, 7-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ex-pr | |- ( A e. { 1 , -u 1 } -> ( A ^ 2 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri | |- ( A e. { 1 , -u 1 } -> ( A = 1 \/ A = -u 1 ) ) |
|
2 | oveq1 | |- ( A = 1 -> ( A ^ 2 ) = ( 1 ^ 2 ) ) |
|
3 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
4 | 2 3 | eqtrdi | |- ( A = 1 -> ( A ^ 2 ) = 1 ) |
5 | oveq1 | |- ( A = -u 1 -> ( A ^ 2 ) = ( -u 1 ^ 2 ) ) |
|
6 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
7 | 5 6 | eqtrdi | |- ( A = -u 1 -> ( A ^ 2 ) = 1 ) |
8 | 4 7 | jaoi | |- ( ( A = 1 \/ A = -u 1 ) -> ( A ^ 2 ) = 1 ) |
9 | 1 8 | syl | |- ( A e. { 1 , -u 1 } -> ( A ^ 2 ) = 1 ) |