Metamath Proof Explorer


Theorem ex-pss

Description: Example for df-pss . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-pss
|- { 1 , 2 } C. { 1 , 2 , 3 }

Proof

Step Hyp Ref Expression
1 ex-ss
 |-  { 1 , 2 } C_ { 1 , 2 , 3 }
2 3ex
 |-  3 e. _V
3 2 tpid3
 |-  3 e. { 1 , 2 , 3 }
4 1re
 |-  1 e. RR
5 1lt3
 |-  1 < 3
6 4 5 gtneii
 |-  3 =/= 1
7 2re
 |-  2 e. RR
8 2lt3
 |-  2 < 3
9 7 8 gtneii
 |-  3 =/= 2
10 6 9 nelpri
 |-  -. 3 e. { 1 , 2 }
11 nelne1
 |-  ( ( 3 e. { 1 , 2 , 3 } /\ -. 3 e. { 1 , 2 } ) -> { 1 , 2 , 3 } =/= { 1 , 2 } )
12 3 10 11 mp2an
 |-  { 1 , 2 , 3 } =/= { 1 , 2 }
13 12 necomi
 |-  { 1 , 2 } =/= { 1 , 2 , 3 }
14 df-pss
 |-  ( { 1 , 2 } C. { 1 , 2 , 3 } <-> ( { 1 , 2 } C_ { 1 , 2 , 3 } /\ { 1 , 2 } =/= { 1 , 2 , 3 } ) )
15 1 13 14 mpbir2an
 |-  { 1 , 2 } C. { 1 , 2 , 3 }