Step |
Hyp |
Ref |
Expression |
1 |
|
ex-sategoelel12.s |
|- S = ( x e. _om |-> if ( x = 2o , 1o , 2o ) ) |
2 |
|
1oex |
|- 1o e. _V |
3 |
2
|
prid1 |
|- 1o e. { 1o , 2o } |
4 |
|
2oex |
|- 2o e. _V |
5 |
4
|
prid2 |
|- 2o e. { 1o , 2o } |
6 |
3 5
|
ifcli |
|- if ( x = 2o , 1o , 2o ) e. { 1o , 2o } |
7 |
6
|
a1i |
|- ( x e. _om -> if ( x = 2o , 1o , 2o ) e. { 1o , 2o } ) |
8 |
1 7
|
fmpti |
|- S : _om --> { 1o , 2o } |
9 |
|
prex |
|- { 1o , 2o } e. _V |
10 |
|
omex |
|- _om e. _V |
11 |
9 10
|
elmap |
|- ( S e. ( { 1o , 2o } ^m _om ) <-> S : _om --> { 1o , 2o } ) |
12 |
8 11
|
mpbir |
|- S e. ( { 1o , 2o } ^m _om ) |
13 |
2
|
sucid |
|- 1o e. suc 1o |
14 |
|
df-2o |
|- 2o = suc 1o |
15 |
13 14
|
eleqtrri |
|- 1o e. 2o |
16 |
|
2onn |
|- 2o e. _om |
17 |
|
1onn |
|- 1o e. _om |
18 |
|
iftrue |
|- ( x = 2o -> if ( x = 2o , 1o , 2o ) = 1o ) |
19 |
18 1
|
fvmptg |
|- ( ( 2o e. _om /\ 1o e. _om ) -> ( S ` 2o ) = 1o ) |
20 |
16 17 19
|
mp2an |
|- ( S ` 2o ) = 1o |
21 |
|
1one2o |
|- 1o =/= 2o |
22 |
21
|
neii |
|- -. 1o = 2o |
23 |
|
eqeq1 |
|- ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) |
24 |
22 23
|
mtbiri |
|- ( x = 1o -> -. x = 2o ) |
25 |
24
|
iffalsed |
|- ( x = 1o -> if ( x = 2o , 1o , 2o ) = 2o ) |
26 |
25 1
|
fvmptg |
|- ( ( 1o e. _om /\ 2o e. _om ) -> ( S ` 1o ) = 2o ) |
27 |
17 16 26
|
mp2an |
|- ( S ` 1o ) = 2o |
28 |
15 20 27
|
3eltr4i |
|- ( S ` 2o ) e. ( S ` 1o ) |
29 |
12 28
|
pm3.2i |
|- ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) |
30 |
16 17
|
pm3.2i |
|- ( 2o e. _om /\ 1o e. _om ) |
31 |
|
eqid |
|- ( { 1o , 2o } SatE ( 2o e.g 1o ) ) = ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |
32 |
31
|
sategoelfvb |
|- ( ( { 1o , 2o } e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
33 |
9 30 32
|
mp2an |
|- ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) |
34 |
29 33
|
mpbir |
|- S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |