| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ex-sategoelel12.s |  |-  S = ( x e. _om |-> if ( x = 2o , 1o , 2o ) ) | 
						
							| 2 |  | 1oex |  |-  1o e. _V | 
						
							| 3 | 2 | prid1 |  |-  1o e. { 1o , 2o } | 
						
							| 4 |  | 2oex |  |-  2o e. _V | 
						
							| 5 | 4 | prid2 |  |-  2o e. { 1o , 2o } | 
						
							| 6 | 3 5 | ifcli |  |-  if ( x = 2o , 1o , 2o ) e. { 1o , 2o } | 
						
							| 7 | 6 | a1i |  |-  ( x e. _om -> if ( x = 2o , 1o , 2o ) e. { 1o , 2o } ) | 
						
							| 8 | 1 7 | fmpti |  |-  S : _om --> { 1o , 2o } | 
						
							| 9 |  | prex |  |-  { 1o , 2o } e. _V | 
						
							| 10 |  | omex |  |-  _om e. _V | 
						
							| 11 | 9 10 | elmap |  |-  ( S e. ( { 1o , 2o } ^m _om ) <-> S : _om --> { 1o , 2o } ) | 
						
							| 12 | 8 11 | mpbir |  |-  S e. ( { 1o , 2o } ^m _om ) | 
						
							| 13 | 2 | sucid |  |-  1o e. suc 1o | 
						
							| 14 |  | df-2o |  |-  2o = suc 1o | 
						
							| 15 | 13 14 | eleqtrri |  |-  1o e. 2o | 
						
							| 16 |  | 2onn |  |-  2o e. _om | 
						
							| 17 |  | 1onn |  |-  1o e. _om | 
						
							| 18 |  | iftrue |  |-  ( x = 2o -> if ( x = 2o , 1o , 2o ) = 1o ) | 
						
							| 19 | 18 1 | fvmptg |  |-  ( ( 2o e. _om /\ 1o e. _om ) -> ( S ` 2o ) = 1o ) | 
						
							| 20 | 16 17 19 | mp2an |  |-  ( S ` 2o ) = 1o | 
						
							| 21 |  | 1one2o |  |-  1o =/= 2o | 
						
							| 22 | 21 | neii |  |-  -. 1o = 2o | 
						
							| 23 |  | eqeq1 |  |-  ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) | 
						
							| 24 | 22 23 | mtbiri |  |-  ( x = 1o -> -. x = 2o ) | 
						
							| 25 | 24 | iffalsed |  |-  ( x = 1o -> if ( x = 2o , 1o , 2o ) = 2o ) | 
						
							| 26 | 25 1 | fvmptg |  |-  ( ( 1o e. _om /\ 2o e. _om ) -> ( S ` 1o ) = 2o ) | 
						
							| 27 | 17 16 26 | mp2an |  |-  ( S ` 1o ) = 2o | 
						
							| 28 | 15 20 27 | 3eltr4i |  |-  ( S ` 2o ) e. ( S ` 1o ) | 
						
							| 29 | 12 28 | pm3.2i |  |-  ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) | 
						
							| 30 | 16 17 | pm3.2i |  |-  ( 2o e. _om /\ 1o e. _om ) | 
						
							| 31 |  | eqid |  |-  ( { 1o , 2o } SatE ( 2o e.g 1o ) ) = ( { 1o , 2o } SatE ( 2o e.g 1o ) ) | 
						
							| 32 | 31 | sategoelfvb |  |-  ( ( { 1o , 2o } e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) | 
						
							| 33 | 9 30 32 | mp2an |  |-  ( S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) <-> ( S e. ( { 1o , 2o } ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) | 
						
							| 34 | 29 33 | mpbir |  |-  S e. ( { 1o , 2o } SatE ( 2o e.g 1o ) ) |