Step |
Hyp |
Ref |
Expression |
1 |
|
ex-sategoelelomsuc.s |
|- S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) |
2 |
|
id |
|- ( Z e. _om -> Z e. _om ) |
3 |
|
peano2 |
|- ( Z e. _om -> suc Z e. _om ) |
4 |
2 3
|
ifcld |
|- ( Z e. _om -> if ( x = 2o , Z , suc Z ) e. _om ) |
5 |
4
|
adantr |
|- ( ( Z e. _om /\ x e. _om ) -> if ( x = 2o , Z , suc Z ) e. _om ) |
6 |
5 1
|
fmptd |
|- ( Z e. _om -> S : _om --> _om ) |
7 |
|
omex |
|- _om e. _V |
8 |
7
|
a1i |
|- ( Z e. _om -> _om e. _V ) |
9 |
8 8
|
elmapd |
|- ( Z e. _om -> ( S e. ( _om ^m _om ) <-> S : _om --> _om ) ) |
10 |
6 9
|
mpbird |
|- ( Z e. _om -> S e. ( _om ^m _om ) ) |
11 |
|
sucidg |
|- ( Z e. _om -> Z e. suc Z ) |
12 |
1
|
a1i |
|- ( Z e. _om -> S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) ) |
13 |
|
iftrue |
|- ( x = 2o -> if ( x = 2o , Z , suc Z ) = Z ) |
14 |
13
|
adantl |
|- ( ( Z e. _om /\ x = 2o ) -> if ( x = 2o , Z , suc Z ) = Z ) |
15 |
|
2onn |
|- 2o e. _om |
16 |
15
|
a1i |
|- ( Z e. _om -> 2o e. _om ) |
17 |
12 14 16 2
|
fvmptd |
|- ( Z e. _om -> ( S ` 2o ) = Z ) |
18 |
|
1one2o |
|- 1o =/= 2o |
19 |
18
|
neii |
|- -. 1o = 2o |
20 |
|
eqeq1 |
|- ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) |
21 |
19 20
|
mtbiri |
|- ( x = 1o -> -. x = 2o ) |
22 |
21
|
iffalsed |
|- ( x = 1o -> if ( x = 2o , Z , suc Z ) = suc Z ) |
23 |
22
|
adantl |
|- ( ( Z e. _om /\ x = 1o ) -> if ( x = 2o , Z , suc Z ) = suc Z ) |
24 |
|
1onn |
|- 1o e. _om |
25 |
24
|
a1i |
|- ( Z e. _om -> 1o e. _om ) |
26 |
12 23 25 3
|
fvmptd |
|- ( Z e. _om -> ( S ` 1o ) = suc Z ) |
27 |
11 17 26
|
3eltr4d |
|- ( Z e. _om -> ( S ` 2o ) e. ( S ` 1o ) ) |
28 |
15 24
|
pm3.2i |
|- ( 2o e. _om /\ 1o e. _om ) |
29 |
7 28
|
pm3.2i |
|- ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) |
30 |
|
eqid |
|- ( _om SatE ( 2o e.g 1o ) ) = ( _om SatE ( 2o e.g 1o ) ) |
31 |
30
|
sategoelfvb |
|- ( ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
32 |
29 31
|
mp1i |
|- ( Z e. _om -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
33 |
10 27 32
|
mpbir2and |
|- ( Z e. _om -> S e. ( _om SatE ( 2o e.g 1o ) ) ) |