| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ex-sategoelelomsuc.s |  |-  S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) | 
						
							| 2 |  | id |  |-  ( Z e. _om -> Z e. _om ) | 
						
							| 3 |  | peano2 |  |-  ( Z e. _om -> suc Z e. _om ) | 
						
							| 4 | 2 3 | ifcld |  |-  ( Z e. _om -> if ( x = 2o , Z , suc Z ) e. _om ) | 
						
							| 5 | 4 | adantr |  |-  ( ( Z e. _om /\ x e. _om ) -> if ( x = 2o , Z , suc Z ) e. _om ) | 
						
							| 6 | 5 1 | fmptd |  |-  ( Z e. _om -> S : _om --> _om ) | 
						
							| 7 |  | omex |  |-  _om e. _V | 
						
							| 8 | 7 | a1i |  |-  ( Z e. _om -> _om e. _V ) | 
						
							| 9 | 8 8 | elmapd |  |-  ( Z e. _om -> ( S e. ( _om ^m _om ) <-> S : _om --> _om ) ) | 
						
							| 10 | 6 9 | mpbird |  |-  ( Z e. _om -> S e. ( _om ^m _om ) ) | 
						
							| 11 |  | sucidg |  |-  ( Z e. _om -> Z e. suc Z ) | 
						
							| 12 | 1 | a1i |  |-  ( Z e. _om -> S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) ) | 
						
							| 13 |  | iftrue |  |-  ( x = 2o -> if ( x = 2o , Z , suc Z ) = Z ) | 
						
							| 14 | 13 | adantl |  |-  ( ( Z e. _om /\ x = 2o ) -> if ( x = 2o , Z , suc Z ) = Z ) | 
						
							| 15 |  | 2onn |  |-  2o e. _om | 
						
							| 16 | 15 | a1i |  |-  ( Z e. _om -> 2o e. _om ) | 
						
							| 17 | 12 14 16 2 | fvmptd |  |-  ( Z e. _om -> ( S ` 2o ) = Z ) | 
						
							| 18 |  | 1one2o |  |-  1o =/= 2o | 
						
							| 19 | 18 | neii |  |-  -. 1o = 2o | 
						
							| 20 |  | eqeq1 |  |-  ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) | 
						
							| 21 | 19 20 | mtbiri |  |-  ( x = 1o -> -. x = 2o ) | 
						
							| 22 | 21 | iffalsed |  |-  ( x = 1o -> if ( x = 2o , Z , suc Z ) = suc Z ) | 
						
							| 23 | 22 | adantl |  |-  ( ( Z e. _om /\ x = 1o ) -> if ( x = 2o , Z , suc Z ) = suc Z ) | 
						
							| 24 |  | 1onn |  |-  1o e. _om | 
						
							| 25 | 24 | a1i |  |-  ( Z e. _om -> 1o e. _om ) | 
						
							| 26 | 12 23 25 3 | fvmptd |  |-  ( Z e. _om -> ( S ` 1o ) = suc Z ) | 
						
							| 27 | 11 17 26 | 3eltr4d |  |-  ( Z e. _om -> ( S ` 2o ) e. ( S ` 1o ) ) | 
						
							| 28 | 15 24 | pm3.2i |  |-  ( 2o e. _om /\ 1o e. _om ) | 
						
							| 29 | 7 28 | pm3.2i |  |-  ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) | 
						
							| 30 |  | eqid |  |-  ( _om SatE ( 2o e.g 1o ) ) = ( _om SatE ( 2o e.g 1o ) ) | 
						
							| 31 | 30 | sategoelfvb |  |-  ( ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) | 
						
							| 32 | 29 31 | mp1i |  |-  ( Z e. _om -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) | 
						
							| 33 | 10 27 32 | mpbir2and |  |-  ( Z e. _om -> S e. ( _om SatE ( 2o e.g 1o ) ) ) |