Metamath Proof Explorer


Theorem ex-sqrt

Description: Example for df-sqrt . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-sqrt
|- ( sqrt ` ; 2 5 ) = 5

Proof

Step Hyp Ref Expression
1 ex-exp
 |-  ( ( 5 ^ 2 ) = ; 2 5 /\ ( -u 3 ^ -u 2 ) = ( 1 / 9 ) )
2 1 simpli
 |-  ( 5 ^ 2 ) = ; 2 5
3 2 fveq2i
 |-  ( sqrt ` ( 5 ^ 2 ) ) = ( sqrt ` ; 2 5 )
4 5re
 |-  5 e. RR
5 0re
 |-  0 e. RR
6 5pos
 |-  0 < 5
7 5 4 6 ltleii
 |-  0 <_ 5
8 sqrtsq
 |-  ( ( 5 e. RR /\ 0 <_ 5 ) -> ( sqrt ` ( 5 ^ 2 ) ) = 5 )
9 4 7 8 mp2an
 |-  ( sqrt ` ( 5 ^ 2 ) ) = 5
10 3 9 eqtr3i
 |-  ( sqrt ` ; 2 5 ) = 5