Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | exanali | |- ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
2 | 1 | exbii | |- ( E. x ( ph /\ -. ps ) <-> E. x -. ( ph -> ps ) ) |
3 | exnal | |- ( E. x -. ( ph -> ps ) <-> -. A. x ( ph -> ps ) ) |
|
4 | 2 3 | bitri | |- ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) ) |