Metamath Proof Explorer


Theorem exanali

Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)

Ref Expression
Assertion exanali
|- ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 annim
 |-  ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) )
2 1 exbii
 |-  ( E. x ( ph /\ -. ps ) <-> E. x -. ( ph -> ps ) )
3 exnal
 |-  ( E. x -. ( ph -> ps ) <-> -. A. x ( ph -> ps ) )
4 2 3 bitri
 |-  ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) )