Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996) (Proof shortened by Wolf Lammen, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exanali | |- ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
| 2 | 1 | exbii | |- ( E. x ( ph /\ -. ps ) <-> E. x -. ( ph -> ps ) ) |
| 3 | exnal | |- ( E. x -. ( ph -> ps ) <-> -. A. x ( ph -> ps ) ) |
|
| 4 | 2 3 | bitri | |- ( E. x ( ph /\ -. ps ) <-> -. A. x ( ph -> ps ) ) |