Metamath Proof Explorer


Theorem exbid

Description: Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses albid.1
|- F/ x ph
albid.2
|- ( ph -> ( ps <-> ch ) )
Assertion exbid
|- ( ph -> ( E. x ps <-> E. x ch ) )

Proof

Step Hyp Ref Expression
1 albid.1
 |-  F/ x ph
2 albid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 nf5ri
 |-  ( ph -> A. x ph )
4 3 2 exbidh
 |-  ( ph -> ( E. x ps <-> E. x ch ) )