Metamath Proof Explorer


Theorem exbidh

Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses exbidh.1
|- ( ph -> A. x ph )
exbidh.2
|- ( ph -> ( ps <-> ch ) )
Assertion exbidh
|- ( ph -> ( E. x ps <-> E. x ch ) )

Proof

Step Hyp Ref Expression
1 exbidh.1
 |-  ( ph -> A. x ph )
2 exbidh.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 alexbii
 |-  ( A. x ph -> ( E. x ps <-> E. x ch ) )
4 1 3 syl
 |-  ( ph -> ( E. x ps <-> E. x ch ) )