Metamath Proof Explorer


Theorem exbiriVD

Description: Virtual deduction proof of exbiri . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.

h1:: |- ( ( ph /\ ps ) -> ( ch <-> th ) )
2:: |- (. ph ->. ph ).
3:: |- (. ph ,. ps ->. ps ).
4:: |- (. ph ,. ps ,. th ->. th ).
5:2,1,?: e10 |- (. ph ->. ( ps -> ( ch <-> th ) ) ).
6:3,5,?: e21 |- (. ph ,. ps ->. ( ch <-> th ) ).
7:4,6,?: e32 |- (. ph ,. ps ,. th ->. ch ).
8:7: |- (. ph ,. ps ->. ( th -> ch ) ).
9:8: |- (. ph ->. ( ps -> ( th -> ch ) ) ).
qed:9: |- ( ph -> ( ps -> ( th -> ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis exbiriVD.1
|- ( ( ph /\ ps ) -> ( ch <-> th ) )
Assertion exbiriVD
|- ( ph -> ( ps -> ( th -> ch ) ) )

Proof

Step Hyp Ref Expression
1 exbiriVD.1
 |-  ( ( ph /\ ps ) -> ( ch <-> th ) )
2 idn3
 |-  (. ph ,. ps ,. th ->. th ).
3 idn2
 |-  (. ph ,. ps ->. ps ).
4 idn1
 |-  (. ph ->. ph ).
5 pm3.3
 |-  ( ( ( ph /\ ps ) -> ( ch <-> th ) ) -> ( ph -> ( ps -> ( ch <-> th ) ) ) )
6 5 com12
 |-  ( ph -> ( ( ( ph /\ ps ) -> ( ch <-> th ) ) -> ( ps -> ( ch <-> th ) ) ) )
7 4 1 6 e10
 |-  (. ph ->. ( ps -> ( ch <-> th ) ) ).
8 pm2.27
 |-  ( ps -> ( ( ps -> ( ch <-> th ) ) -> ( ch <-> th ) ) )
9 3 7 8 e21
 |-  (. ph ,. ps ->. ( ch <-> th ) ).
10 biimpr
 |-  ( ( ch <-> th ) -> ( th -> ch ) )
11 10 com12
 |-  ( th -> ( ( ch <-> th ) -> ch ) )
12 2 9 11 e32
 |-  (. ph ,. ps ,. th ->. ch ).
13 12 in3
 |-  (. ph ,. ps ->. ( th -> ch ) ).
14 13 in2
 |-  (. ph ->. ( ps -> ( th -> ch ) ) ).
15 14 in1
 |-  ( ph -> ( ps -> ( th -> ch ) ) )